(Peer-Reviewed) Study on the dynamic behavior of herringbone gear structure of marine propulsion system powered by double-cylinder turbines
JiangHai XU 徐江海 ¹, ChunXiao JIAO 焦春晓 ¹, DongLin ZOU 邹冬林 ¹, Na TA 塔娜 ¹, ZhuShi RAO 饶柱石 ¹ ²
¹ State Key Laboratory of Mechanical System and Vibration, Institute of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200240, China
中国 上海 上海交通大学振动、冲击、噪声研究所 机械系统与振动国家重点实验室
² Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
中国 上海 高新船舶与深海开发装备协同创新中心
Abstract
Propulsion systems powered by double-cylinder turbines (DCT) are widely used in large-scale ships. However, the nonlinear instability leads to hidden dangers associated with the safe operation, and there is a lack of theoretical and systematic research on this problem. Based on the gear transmission principle and non-Newtonian thermal elastohydrodynamic lubrication (EHL) theory, a torsional model of a two-stage herringbone system forced by unsymmetrical load is established.
The nonlinear and time-varying factors of meshing friction, meshing stiffness, and gear pair backlash are included in the model, and multiple meshing states, including single- and double-sided impact are studied. New nonlinear phenomena of the dynamic system are explored and the effects of the unsymmetrical load on the system stability are quantified.
The results indicate that the stability of the gear system is improved, and that the back-sided impact gradually disappears with the increases of load ratio between the two inputs and the input load value. Furthermore, it is found that the gear pairs on the low-load side experience more severe vibration than those on the high-load side. Finally, the stability of the gear pairs decreases along the power transmission path of the multi-stage gear system. The results of this research will be useful when making predictions of the stability of such systems and in the optimization of the load parameters.
Light-induced enhancement of exciton transport in organic molecular crystal
Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
Opto-Electronic Advances
2025-03-28
Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
Opto-Electronic Advances
2025-03-28
Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
Opto-Electronic Advances
2025-01-22