Year
Month
(Peer-Reviewed) Post-ingestion conversion of dietary indoles into anticancer agents
Li Ping Lin ¹ ², Dan Liu 刘丹 ², Jia Cheng Qian ², Liang Wu ², Quan Zhao 赵权 ¹, Ren Xiang Tan 谭仁祥 ¹ ²
¹ State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, China 南京大学 功能生物分子研究所 医药生物技术国家重点实验室
² State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China 南京中医药大学 中药品质与效能国家重点实验室培育点
National Science Review, 2021-08-13
Abstract

Human health benefits from consuming cruciferous vegetables that release indole-3-carbinol (I3C), but the in vivo transformation of I3C-related indoles remains underinvestigated. Here we present the post-ingestion conversion of I3C into antitumor agents, 2-(indol-3-ylmethyl)-3,3′-diindolylmethane (LTr1) and 3,3′-diindolylmethane (DIM), by conceptualizing and materializing the reaction flux derailing (RFD) approach as a means of unraveling these stepwise transformations to be non-enzymatic but pH-dependent and gut microbe-sensitive.

In the upper (or acidic) gastrointestine, LTr1 generates through the Michael addition of 3-methyleneindolium (3MI, derived in situ from I3C) to DIM producing from I3C via the formaldehyde-releasing (major) and CO2-liberating (minor) pathways. In the large intestine, 'endogenous' I3C and DIM can form respectively from couplings of formaldehyde with one and two molecules of indole (a tryptophan catabolite). Acid-producing gut bacteria such as Lactobacillus acidophilus facilitate the H+-promotable steps. The work updates the understanding on the merits of I3C consumptions and identifies LTr1 as a drug candidate.
Post-ingestion conversion of dietary indoles into anticancer agents_1
Post-ingestion conversion of dietary indoles into anticancer agents_2
Post-ingestion conversion of dietary indoles into anticancer agents_3
  • Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
  • Zhao Zhang, Gaoyuan Li, Yonglei Liu, Haiyun Wang, Bernhard J. Hoenders, Chunhao Liang, Yangjian Cai, Jun Zeng
  • Opto-Electronic Science
  • 2024-01-31
  • Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
  • Xin Ge, Si Chen, Kan Lin, Guangming Ni, En Bo, Lulu Wang, Linbo Liu
  • Opto-Electronic Science
  • 2024-01-31
  • Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
  • Yuncheng Liu, Ke Xu, Xuhao Fan, Xinger Wang, Xuan Yu, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2024-01-25
  • Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
  • Keyao Li, Yiming Wang, Dapu Pi, Baoli Li, Haitao Luan, Xinyuan Fang, Peng Chen, Yanqing Lu, Min Gu
  • Opto-Electronic Advances
  • 2024-01-25
  • Physics-informed deep learning for fringe pattern analysis
  • Wei Yin, Yuxuan Che, Xinsheng Li, Mingyu Li, Yan Hu, Shijie Feng, Edmund Y. Lam, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2024-01-25
  • Advancing computer-generated holographic display thanks to diffraction model-driven deep nets
  • Vittorio Bianco, Pietro Ferraro
  • Opto-Electronic Advances
  • 2024-01-16
  • Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
  • Jiangbo Lyu, Tao Zhu, Yan Zhou, Zhenmin Chen, Yazhi Pi, Zhengtong Liu, Xiaochuan Xu, Ke Xu, Xu Ma, Lei Wang, Zizheng Cao, Shaohua Yu
  • Opto-Electronic Science
  • 2024-01-09
  • Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
  • Yuting Xiao, Lianwei Chen, Mingbo Pu, Mingfeng Xu, Qi Zhang, Yinghui Guo, Tianqu Chen, Xiangang Luo
  • Opto-Electronic Science
  • 2024-01-05
  • Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry
  • Chunyan Chu, Zhentao Liu, Mingliang Chen, Xuehui Shao, Guohai Situ, Yuejin Zhao, Shensheng Han
  • Opto-Electronic Advances
  • 2023-3-10
  • Flat soliton microcomb source
  • Xinyu Wang, Xuke Qiu, Mulong Liu, Feng Liu, Mengmeng Li, Linpei Xue, Bohan Chen, Mingran Zhang, Peng Xie
  • Opto-Electronic Science
  • 2023-12-29
  • Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection
  • Deer Su, Xiangyu Li, Weida Gao, Qiuhua Wei, Haoyu Li, Changliang Guo, Weisong Zhao
  • Opto-Electronic Science
  • 2023-12-28



  • Stretchable and self-healable hydrogel artificial skin                                Metagenomic evidence for the coexistence of SARS and H1N1 in patients from 2007-2012 flu seasons
    About
    |
    Contact
    |
    Copyright © PubCard