Year
Month

(Peer-Reviewed) Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection
Xingfeng Li 李星峰 ¹, Jingchi Li 李靖驰 ¹, Xiong Ni 倪雄 ¹, Hudi Liu 刘虎迪 ¹, Qunbi Zhuge 诸葛群碧 ¹, Haoshuo Chen 陈昊硕 ², William Shieh 谢伟 ³, Yikai Su 苏翼凯 ¹
¹ State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
中国 上海 上海交通大学电子工程系 区域光纤通信网与新型光通信系统国家重点实验室
² Nokia Bell Labs, 600 Mountain Ave, Murray Hill, NJ 07974, USA
³ School of Engineering, Westlake University, Hangzhou 310030, China
中国 杭州 西湖大学工学院
Opto-Electronic Science , 2024-12-24
Abstract

Complex-valued double-sideband direct detection (DD) can reconstruct the optical field and achieve a high electrical spectral efficiency (ESE) comparable to that of a coherent homodyne receiver, and DD does not require a costly local oscillator laser. However, a fundamental question remains if there is an optimal DD receiver structure with the simplest design to approach the performance of the coherent homodyne detection.

This study derives the optimal DD receiver structure with an optimal transfer function to recover a quadrature amplitude modulation (QAM) signal with a near-zero guard band at the central frequency of the signal. We derive the theoretical ESE limit for various detection schemes by invoking Shannon’s formula. Our proposed scheme is closest to coherent homodyne detection in terms of the theoretical ESE limit.

By leveraging a WaveShaper to construct the optimal transfer function, we conduct a proof-of-concept experiment to transmit a net 228.85-Gb/s 64-QAM signal over an 80-km single-mode fiber with a net ESE of 8.76 b/s/Hz. To the best of our knowledge, this study reports the highest net ESE per polarization per wavelength for DD transmission beyond 40-km single-mode fiber. For a comprehensive metric, denoted as 2ᴱˢᴱ×Reach, we achieve the highest 2ᴱˢᴱ×Reach per polarization per wavelength for DD transmission.
Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection_1
Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection_2
Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection_3
Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection_4
  • Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization
  • Yi Zheng, Hao-Ran Zhang, Xiao-Wei Li, You-Ran Zhao, Zhao-Song Li, Ye-Hao Hou, Chao Liu, Qiong-Hua Wang
  • Opto-Electronic Advances
  • 2025-06-19
  • Cascaded metasurfaces for adaptive aberration correction
  • Lei Zhang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2025-05-27
  • Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
  • Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
  • Opto-Electronic Advances
  • 2025-05-27
  • Spectrally extended line field optical coherence tomography angiography
  • Si Chen, Kan Lin, Xi Chen, Yukun Wang, Chen Hsin Sun, Jia Qu, Xin Ge, Xiaokun Wang, Linbo Liu
  • Opto-Electronic Advances
  • 2025-05-27
  • Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
  • Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
  • Opto-Electronic Advances
  • 2025-05-27
  • Integrated photonic polarizers with 2D reduced graphene oxide
  • Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
  • Opto-Electronic Science
  • 2025-05-22
  • Tip-enhanced Raman scattering of glucose molecules
  • Zhonglin Xie, Chao Meng, Donghua Yue, Lei Xu, Ting Mei, Wending Zhang
  • Opto-Electronic Science
  • 2025-05-22
  • Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
  • Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
  • Opto-Electronic Science
  • 2025-04-25
  • Reconfigurable origami chiral response for holographic imaging and information encryption
  • Zhibiao Zhu, Yongfeng Li, Jiafu Wang, Ze Qin, Lixin Jiang, Yang Chen, Shaobo Qu
  • Opto-Electronic Science
  • 2025-04-25
  • Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage
  • Xingdong Feng, Tianqi Zhang, Xuejun Liu, Fan Zhang, Jianjun Wang, Hong Bao, Shan Jiang, YongAn Huang
  • Opto-Electronic Advances
  • 2025-04-02
  • Phase reconstruction via metasurface-integrated quantum analog operation
  • Qiuying Li, Minggui Liang, Shuoqing Liu, Jiawei Liu, Shizhen Chen, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Advances
  • 2025-04-02
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31



  • Enhanced amplified spontaneous emission via splitted strong coupling mode in large-area plasmonic cone lattices        Ferroelectric domain engineering of lithium niobate
    About
    |
    Contact
    |
    Copyright © PubCard