Year
Month

(Peer-Reviewed) Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection
Xingfeng Li 李星峰 ¹, Jingchi Li 李靖驰 ¹, Xiong Ni 倪雄 ¹, Hudi Liu 刘虎迪 ¹, Qunbi Zhuge 诸葛群碧 ¹, Haoshuo Chen 陈昊硕 ², William Shieh 谢伟 ³, Yikai Su 苏翼凯 ¹
¹ State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
中国 上海 上海交通大学电子工程系 区域光纤通信网与新型光通信系统国家重点实验室
² Nokia Bell Labs, 600 Mountain Ave, Murray Hill, NJ 07974, USA
³ School of Engineering, Westlake University, Hangzhou 310030, China
中国 杭州 西湖大学工学院
Opto-Electronic Science , 2024-12-24
Abstract

Complex-valued double-sideband direct detection (DD) can reconstruct the optical field and achieve a high electrical spectral efficiency (ESE) comparable to that of a coherent homodyne receiver, and DD does not require a costly local oscillator laser. However, a fundamental question remains if there is an optimal DD receiver structure with the simplest design to approach the performance of the coherent homodyne detection.

This study derives the optimal DD receiver structure with an optimal transfer function to recover a quadrature amplitude modulation (QAM) signal with a near-zero guard band at the central frequency of the signal. We derive the theoretical ESE limit for various detection schemes by invoking Shannon’s formula. Our proposed scheme is closest to coherent homodyne detection in terms of the theoretical ESE limit.

By leveraging a WaveShaper to construct the optimal transfer function, we conduct a proof-of-concept experiment to transmit a net 228.85-Gb/s 64-QAM signal over an 80-km single-mode fiber with a net ESE of 8.76 b/s/Hz. To the best of our knowledge, this study reports the highest net ESE per polarization per wavelength for DD transmission beyond 40-km single-mode fiber. For a comprehensive metric, denoted as 2ᴱˢᴱ×Reach, we achieve the highest 2ᴱˢᴱ×Reach per polarization per wavelength for DD transmission.
Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection_1
Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection_2
Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection_3
Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection_4
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31
  • Quantitative detection of trace nanoplastics (down to 50 nm) via surface-enhanced raman scattering based on the multiplex-feature coffee ring
  • Xinao Lin, Fengcai Lei, Xiu Liang, Yang Jiao, Xiaofei Zhao, Zhen Li, Chao Zhang, Jing Yu
  • Opto-Electronic Advances
  • 2025-03-28
  • Tunable vertical cavity microlasers based on MAPbI₃ phase change perovskite
  • Rongzi Wang, Ying Su, Hongji Fan, Chengxiang Qi, Shuang Zhang, Tun Cao
  • Opto-Electronic Advances
  • 2025-03-28
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22



  • Enhanced amplified spontaneous emission via splitted strong coupling mode in large-area plasmonic cone lattices        Ferroelectric domain engineering of lithium niobate
    About
    |
    Contact
    |
    Copyright © PubCard