(Peer-Reviewed) On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
Cheng-Long Zheng 郑程龙 ¹, Pei-Nan Ni 倪佩楠 ¹, Yi-Yang Xie 解意洋 ², Patrice Genevet ³
¹ Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China
中国 郑州 郑州大学物理学院 材料物理教育部重点实验室 河南省金刚石光电材料与器件重点实验室
² Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
中国 北京 北京工业大学光电子技术教育部重点实验室
³ Colorado School of Mines, 1523 Illinois St., Golden, CO 80401, USA
Opto-Electronic Advances
, 2025-01-07
Abstract
Semiconductor optoelectronics devices, capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologies ever developed, which has profoundly reshaped the modern life with a wide range of applications. In recent decades, semiconductor technology has rapidly evolved from first-generation narrow bandgap materials (Si, Ge) to the latest fourth-generation ultra-wide bandgap semiconductor (GaO, diamond, AlN) with enhanced performance to meet growing demands.
Additionally, merging semiconductor devices with other techniques, such as computer assisted design, state-of-the-art micro/nano fabrications, novel epitaxial growth, have significantly accelerated the development of semiconductor optoelectronics devices. Among them, integrating metasurfaces with semiconductor optoelectronic devices have opened new frontiers for on-chip control of their electromagnetic response, providing access to previously inaccessible degrees of freedom.
We review the recent advances in on-chip control of a variety of semiconductor optoelectronic devices using integrated metasurfaces, including semiconductor lasers, semiconductor light emitting devices, semiconductor photodetectors, and low dimensional semiconductors. The integration of metasurfaces with semiconductors offers wafer-level ultracompact solutions for manipulating the functionalities of semiconductor devices, while also providing a practical platform for implementing cutting-edge metasurface technology in real-world applications.
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
Opto-Electronic Advances
2025-05-27
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
Opto-Electronic Advances
2025-05-27
Integrated photonic polarizers with 2D reduced graphene oxide
Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
Opto-Electronic Science
2025-05-22
Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
Opto-Electronic Science
2025-04-25