Year
Month

(Peer-Reviewed) Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes
Yuan-Yuan Zhao 赵圆圆 ¹, Xue-Liang Ren ², Mei-Ling Zheng 郑美玲 ² ³, Feng Jin 金峰 ², Jie Liu 刘洁 ², Xian-Zi Dong 董贤子 ², Zhen-Sheng Zhao 赵震声 ², Xuan-Ming Duan 段宣明 ¹
¹ Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
中国 广州 暨南大学光子技术研究院 广东省光纤传感与通信技术重点实验室
² Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
中国 北京 中国科学院理化技术研究所 有机纳米光子学实验室 中国科学院仿生材料与界面科学重点实验室
³ School of Future Technologies, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, China
中国 北京 中国科学院大学 雁栖湖校区 未来技术学院
Opto-Electronic Advances , 2021-12-25
Abstract

The silver nanowires (Ag NWs) electrodes, which consist of incompact Ag nanoparticles (NPs) formed by multi-photon photoreduction, usually have poor conductivities. An effective strategy for enhancing conductivity of the Ag NWs electrodes is plasmon-enhanced nanosoldering (PLNS) by laser irradiation. Here, plasmon-enhanced photothermal effect is used to locally solder Ag NPs and then aggregates of these NPs grow into large irregular particles in PLNS process.

Finite element method (FEM) simulations indicate that the soldering process is triggered by localized surface plasmon-induced electric field enhancement at “hot-spots”. The effectiveness of PLNS for enhancing conductivity depends on laser power density and irradiation time. By optimizing the conditions of PLNS, the electrical conductivity of Ag NWs is significantly enhanced and the conductivity σs is increased to 2.45×107 S/m, which is about 39% of the bulk Ag. This PLNS of Ag NWs provides an efficient and cost-effective technique to rapidly produce large-area metal nanowire electrodes and capacitors with high conductivity, excellent uniformity, and good flexibility.
Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes_1
Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes_2
Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes_3
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31
  • Quantitative detection of trace nanoplastics (down to 50 nm) via surface-enhanced raman scattering based on the multiplex-feature coffee ring
  • Xinao Lin, Fengcai Lei, Xiu Liang, Yang Jiao, Xiaofei Zhao, Zhen Li, Chao Zhang, Jing Yu
  • Opto-Electronic Advances
  • 2025-03-28
  • Tunable vertical cavity microlasers based on MAPbI₃ phase change perovskite
  • Rongzi Wang, Ying Su, Hongji Fan, Chengxiang Qi, Shuang Zhang, Tun Cao
  • Opto-Electronic Advances
  • 2025-03-28
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22



  • Continuous purification and culture of rat type 1 and type 2 alveolar epithelial cells by magnetic cell sorting        Syn-Faulting Calcite Ages: Constraint for the Late Mesozoic Deformation of the Ningzhen Mountain, Eastern China
    About
    |
    Contact
    |
    Copyright © PubCard