Year
Month
(Peer-Reviewed) The second fusion of laser and aerospace—an inspiration for high energy lasers
Xiaojun Xu 许晓军 ¹ ² ³ ⁴, Rui Wang 王蕊 ¹ ² ³ ⁴, Zining Yang 杨子宁 ¹ ² ³ ⁴
¹ College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
中国 长沙 国防科技大学 前沿交叉学科学院
² Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China
中国 长沙 国防科技大学 量子信息学科交叉中心
³ State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha 410073, China
中国 长沙 国防科技大学 脉冲功率激光技术国家重点实验室
⁴ Nanhu Laser Laboratory, Changsha 410073, China
中国 长沙 南湖之光实验室
Opto-Electronic Advances, 2023-06-25
Abstract

Since the first laser was invented, the pursuit of high-energy lasers (HELs) has always been enthusiastic. The first revolution of HELs was pushed by the fusion of laser and aerospace in the 1960s, with the chemical rocket engines giving fresh impetus to the birth of gas flow and chemical lasers, which finally turned megawatt lasers from dream into reality.

Nowadays, the development of HELs has entered the age of electricity as well as the rocket engines. The properties of current electric rocket engines are highly consistent with HELs' goals, including electrical driving, effective heat dissipation, little medium consumption and extremely light weight and size, which inspired a second fusion of laser and aerospace and motivated the exploration for potential HELs.

As an exploratory attempt, a new configuration of diode pumped metastable rare gas laser was demonstrated, with the gain generator resembling an electric rocket-engine for improved power scaling ability.
The second fusion of laser and aerospace—an inspiration for high energy lasers_1
The second fusion of laser and aerospace—an inspiration for high energy lasers_2
The second fusion of laser and aerospace—an inspiration for high energy lasers_3
  • Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity
  • Chang-Cun Yan, Zong-Lu Che, Wan-Ying Yang, Xue-Dong Wang, Liang-Sheng Liao
  • Opto-Electronic Advances
  • 2023-07-20
  • Encoding physics to learn reaction–diffusion processes
  • Chengping Rao, Pu Ren, Qi Wang, Oral Buyukozturk, Hao Sun, Yang Liu
  • Nature Machine Intelligence
  • 2023-07-17
  • Accurate medium-range global weather forecasting with 3D neural networks
  • Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, Qi Tian
  • Nature
  • 2023-07-05
  • Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core
  • Jianying Jing, Kun Liu, Junfeng Jiang, Tianhua Xu, Shuang Wang, Tiegen Liu
  • Opto-Electronic Advances
  • 2023-06-25
  • In-flow holographic tomography boosts lipid droplet quantification
  • Michael John Fanous, Aydogan Ozcan
  • Opto-Electronic Advances
  • 2023-06-25
  • Hot electron electrochemistry at silver activated by femtosecond laser pulses
  • Oskar Armbruster, Hannes Pöhl, Wolfgang Kautek
  • Opto-Electronic Advances
  • 2023-06-25
  • Highly sensitive microfiber ultrasound sensor for photoacoustic imaging
  • Perry Ping Shum, Gerd Keiser, Georges Humbert, Dora Juan Juan Hu, A. Ping Zhang, Lei Su
  • Opto-Electronic Advances
  • 2023-06-25
  • Integral imaging-based tabletop light field 3D display with large viewing angle
  • Yan Xing, Xing-Yu Lin, Lin-Bo Zhang, Yun-Peng Xia, Han-Le Zhang, Hong-Yu Cui, Shuang Li, Tong-Yu Wang, Hui Ren, Di Wang, Huan Deng, Qiong-Hua Wang
  • Opto-Electronic Advances
  • 2023-06-25
  • Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption
  • Zhenyuan Lin, Kuan Liu, Tun Cao, Minghui Hong
  • Opto-Electronic Advances
  • 2023-06-25
  • 4K-DMDNet: diffraction model-driven network for 4K computer-generated holography
  • Kexuan Liu, Jiachen Wu, Zehao He, Liangcai Cao
  • Opto-Electronic Advances
  • 2023-05-30



  • In-flow holographic tomography boosts lipid droplet quantification                                Hot electron electrochemistry at silver activated by femtosecond laser pulses
    About
    |
    Contact
    |
    Copyright © PubCard