Year
Month
(Peer-Reviewed) Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry
Chunyan Chu 褚春艳 ¹ ², Zhentao Liu 刘震涛 ³ ⁴, Mingliang Chen 陈明亮 ³ ⁴, Xuehui Shao 邵学辉 ⁵, Guohai Situ 司徒国海 ³ ⁴, Yuejin Zhao 赵跃进 ¹ ², Shensheng Han 韩申生 ³ ⁶
¹ Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
中国 北京 精密光电测试仪器及技术北京市重点实验室
² School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
中国 北京 北京理工大学光电学院
³ Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
中国 上海 中国科学院 上海光学精密机械研究所
⁴ University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学
⁵ National Laboratory of Aerospace Intelligent Control Technology, Beijing 100089, China
中国 北京 宇航智能控制技术全国重点实验室
⁶ Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
中国 杭州 中国科学院大学 杭州高等研究院
Opto-Electronic Advances, 2023-3-10
Abstract

High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths. Optical aperture synthesis is an important high-resolution imaging technology used in astronomy. Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations, and the technical difficulty increases rapidly as the wavelength decreases. The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations, but suffers from a narrow spectral bandwidth which results in a lack of effective photons.

In this study, we propose optical synthetic aperture imaging based on spatial intensity interferometry. This not only realizes diffraction-limited optical aperture synthesis in a single shot, but also enables imaging with a wide spectral bandwidth, which greatly improves the optical energy efficiency of intensity interferometry. And this method is insensitive to the optical path difference between the sub-apertures. Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light, whose maximum optical path difference between the sub-apertures reaches 69λ.

This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths.
Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry_1
Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry_2
Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry_3
Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry_4
  • OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • Taigao Ma, Haozhu Wang, L. Jay Guo
  • Opto-Electronic Advances
  • 2024-07-10
  • Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
  • Xuan Yang, Xinfeng Zhang, Tianxu Zhang, Linyi Xiang, Bin Xie, Xiaobing Luo
  • Opto-Electronic Advances
  • 2024-07-05
  • Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
  • Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
  • Opto-Electronic Advances
  • 2024-07-05
  • Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
  • Yuxin Tian, Boyu Dong, Yaxuan Li, Bing Xiong, Junwen Zhang, Changzheng Sun, Zhibiao Hao, Jian Wang, Lai Wang, Yanjun Han, Hongtao Li, Lin Gan, Nan Chi, Yi Luo
  • Opto-Electronic Science
  • 2024-07-01
  • Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
  • Shasha Li, Yini Fang, Jianfang Wang
  • Opto-Electronic Science
  • 2024-06-28
  • Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots
  • Anir S. Sharbirin, Rebekah E. Kong, Wendy B. Mato, Trang Thu Tran, Eunji Lee, Jolene W. P. Khor, Afrizal L. Fadli, Jeongyong Kim
  • Opto-Electronic Advances
  • 2024-06-28
  • High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses
  • Kotaro Obata, Shota Kawabata, Yasutaka Hanada, Godai Miyaji, Koji Sugioka
  • Opto-Electronic Science
  • 2024-06-24
  • Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution
  • Xin Xu, Qin Luo, Jixiang Wang, Yahui Song, Hong Ye, Xin Zhang, Yi He, Minxuan Sun, Ruobing Zhang, Guohua Shi
  • Opto-Electronic Advances
  • 2024-06-11
  • Seeing at a distance with multicore fibers
  • Haogong Feng, Xi Chen, Runze Zhu, Yifeng Xiong, Ye Chen, Yanqing Lu, Fei Xu
  • Opto-Electronic Advances
  • 2024-06-05
  • NIR-triggered on-site NO/ROS/RNS nanoreactor: Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation
  • Ziqing Xu, Yakun Kang, Jie Zhang, Jiajia Tang, Hanyao Sun, Yang Li, Doudou He, Xuan Sha, Yuxia Tang, Ziyi Fu, Feiyun Wu, Shouju Wang
  • Opto-Electronic Advances
  • 2024-06-05
  • Reconfigurable optical neural networks with Plug-and-Play metasurfaces
  • Yongmin Liu, Yuxiao Li
  • Opto-Electronic Advances
  • 2024-06-04



  • All-fiber ellipsometer for nanoscale dielectric coatings                                High-resolution visible imaging with piezoelectric deformable secondary mirror: experimental results at the 1.8-m adaptive telescope
    About
    |
    Contact
    |
    Copyright © PubCard