(Peer-Reviewed) High-performance warm white LED based on thermally stable all inorganic perovskite quantum dots
Jr-Hau He 何志浩
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
中国 香港 香港城市大学 材料科学及工程学系
Opto-Electronic Advances, 2023-03-25
Abstract
All inorganic CsPbBr3 quantum dots (QDs) are regarded as excellent candidates for next-generation emitters due to their high photoluminescence quantum yield (PLQY) and defect tolerance. However, the poor stability and degraded luminescent performance may impede their further commercialization because of the separation of conventional ligands from the QDs surfaces.
Recently, Zang replaced the regular oleic acid with 2-hexyl-decanoic acid (DA), which possesses higher binding energy on the QDs surfaces, to act as ligands of QDs, exhibiting PLQY of 96% and excellent stabilities against ethanol and water. WLEDs with DA-modified CsPbBr3 QDs achieved improved thermal stability, a color rendering index of 93, a power efficiency of 64.8 lm/W and a properly correlated color temperature value of 3018 K, implying their prominent applications in solid-state lighting and displays.
A review on optical torques: from engineered light fields to objects
Tao He, Jingyao Zhang, Din Ping Tsai, Junxiao Zhou, Haiyang Huang, Weicheng Yi, Zeyong Wei Yan Zu, Qinghua Song, Zhanshan Wang, Cheng-Wei Qiu, Yuzhi Shi, Xinbin Cheng
Opto-Electronic Science
2025-11-25
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
Opto-Electronic Advances
2025-09-25