Year
Month
(Peer-Reviewed) Liquid crystal-integrated metasurfaces for an active photonic platform
Dohyun Kang ¹, Hyeonsu Heo ¹, Younghwan Yang ¹, Junhwa Seong ¹, Hongyoon Kim ¹, Joohoon Kim ¹, Junsuk Rho ¹ ² ³ ⁴ ⁵
¹ Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
² Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
³ Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 36763, Republic of Korea
⁴ POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
⁵ National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
Opto-Electronic Advances, 2024-04-25
Abstract

Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures. However, metasurfaces typically have static optical responses with fixed geometries of nanostructures, which poses challenges for implementing transition to technology by replacing conventional optical components.

To solve this problem, liquid crystals (LCs) have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time. Here, we review recent studies on LC-powered tunable metasurfaces, which are categorized as wavefront tuning and spectral tuning. Compared to numerous reviews on tunable metasurfaces, this review intensively explores recent development of LC-integrated metasurfaces.

At the end of this review, we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs. We hope that this review will accelerate the development of new and innovative LC-powered devices.
Liquid crystal-integrated metasurfaces for an active photonic platform_1
Liquid crystal-integrated metasurfaces for an active photonic platform_2
Liquid crystal-integrated metasurfaces for an active photonic platform_3
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
  • Fujie Li, Haoyu Zhang, Zhilan Lu, Li Yao, Yuan Wei, Ziwei Li, Feng Bao, Junwen Zhang, Yingjun Zhou, Nan Chi
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16
  • Halide perovskite volatile unipolar nanomemristor
  • Abolfazl Mahmoodpoor, Prokhor A. Alekseev, Ksenia A. Gasnikova, Kuzmenko Natalia, Artem Larin, Sergey Makarov Aleksandra Furasova
  • Opto-Electronic Advances
  • 2025-10-15
  • Recent advances in exciton-polariton in perovskite
  • Khalil As'ham, Andergachew Mekonnen Berhe, Ibrahim A. M. Al-Ani, Haroldo T. Hattori, Andrey E. Miroshnichenko
  • Opto-Electronic Science
  • 2025-09-25
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25
  • Parallel all-optical encoded CDMA-driven anti-interference LiDAR for 78 MHz point acquisition
  • Shujian Gong, Peng Tian, Yinghui Guo, Xiaoyin Li, Mingbo Pu, Qi Zhang, Yanqin Wang, Heping Liu, Xiangang Luo
  • Opto-Electronic Technology
  • 2025-09-22
  • Enrichment strategies in surface-enhanced Raman scattering: theoretical insights and optical design for enhanced light-matter interaction
  • Zhiyang Pei, Chang Ji, Mingrui Shao, Yang Wu, Xiaofei Zhao, Baoyuan Man, Zhen Li, Jing Yu, Chao Zhang
  • Opto-Electronic Science
  • 2025-09-18



  • Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots                                High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses
    About
    |
    Contact
    |
    Copyright © PubCard