Year
Month
(Peer-Reviewed) Reducing loss of significance in the computation of Earth-based two-way Doppler observables for small body missions
Wei-Tong Jin 金炜桐 ¹ ², Fei Li 李斐 ¹ ³, Jian-Guo Yan 鄢建国 ¹, Xuan Yang 杨轩 ¹ ², Mao Ye 叶茂 ¹, Wei-Feng Hao 郝卫锋 ³, Thomas Paul Andert ⁴, Jean-Pierre Barriot ⁵
¹ State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
中国 武汉 武汉大学测绘遥感信息工程国家重点实验室
² State Key Laboratory of Satellite Navigation System and Equipment Technology, Shijiazhuang 050200, China
中国 石家庄 卫星导航系统与装备技术国家重点实验室
³ Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, China
中国 武汉 武汉大学中国南极测绘研究中心
⁴ Universitat der Bundeswehr München, Neubiberg, Bayern, 85579, Germany
⁵ University of French Polynesia, BP 6570, F-98702 Faa'a, Tahiti, French Polynesia
Research in Astronomy and Astrophysics (RAA), 2021-03-19
Abstract

Two-way Doppler measurement is a typical Earth-based radiometric technique for interplanetary spacecraft navigation and gravity science investigation. The most widely used model for the computation of two-way Doppler observables is Moyer’s differenced-range Doppler (DRD) formula, which is based on a Schwarzschild approximation of the Solar-System space-time.

However, the computation of range difference in DRD formula is sensitive to round-off errors due to approximate numbers defined by the norm IEEE754 in all PCs. This paper presented two updated models and their corresponding detailed instructions for the computation of the two-way Doppler observables so as to impair the effects of this type of numerical error. These two models were validated by two case studies related to the Rosetta mission—asteroid Lutetia flyby and comet 67P/Churyumov-Gerasimenko orbiting case. In these two cases, the numerical noise from the updated models can be reduced by two orders-of-magnitude in the computed two-way Doppler observables. The results showed an accuracy from better than 6×10⁻³ mm s⁻¹ at 1 s counting time interval to better than 3 × 10⁻⁵ mm s⁻¹ at 60 s counting time interval.
Reducing loss of significance in the computation of Earth-based two-way Doppler observables for small body missions_1
Reducing loss of significance in the computation of Earth-based two-way Doppler observables for small body missions_2
Reducing loss of significance in the computation of Earth-based two-way Doppler observables for small body missions_3
  • Miniature tunable Airy beam optical meta-device
  • Jing Cheng Zhang, Mu Ku Chen, Yubin Fan, Qinmiao Chen, Shufan Chen, Jin Yao, Xiaoyuan Liu, Shumin Xiao, Din Ping Tsai
  • Opto-Electronic Advances
  • 2024-02-26
  • Data-driven polarimetric imaging: a review
  • Kui Yang, Fei Liu, Shiyang Liang, Meng Xiang, Pingli Han, Jinpeng Liu, Xue Dong, Yi Wei, Bingjian Wang, Koichi Shimizu, Xiaopeng Shao
  • Opto-Electronic Science
  • 2024-02-24
  • Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
  • Zhao Zhang, Gaoyuan Li, Yonglei Liu, Haiyun Wang, Bernhard J. Hoenders, Chunhao Liang, Yangjian Cai, Jun Zeng
  • Opto-Electronic Science
  • 2024-01-31
  • Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
  • Xin Ge, Si Chen, Kan Lin, Guangming Ni, En Bo, Lulu Wang, Linbo Liu
  • Opto-Electronic Science
  • 2024-01-31
  • Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
  • Yuncheng Liu, Ke Xu, Xuhao Fan, Xinger Wang, Xuan Yu, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2024-01-25
  • Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
  • Keyao Li, Yiming Wang, Dapu Pi, Baoli Li, Haitao Luan, Xinyuan Fang, Peng Chen, Yanqing Lu, Min Gu
  • Opto-Electronic Advances
  • 2024-01-25
  • Physics-informed deep learning for fringe pattern analysis
  • Wei Yin, Yuxuan Che, Xinsheng Li, Mingyu Li, Yan Hu, Shijie Feng, Edmund Y. Lam, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2024-01-25
  • Advancing computer-generated holographic display thanks to diffraction model-driven deep nets
  • Vittorio Bianco, Pietro Ferraro
  • Opto-Electronic Advances
  • 2024-01-16
  • Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
  • Jiangbo Lyu, Tao Zhu, Yan Zhou, Zhenmin Chen, Yazhi Pi, Zhengtong Liu, Xiaochuan Xu, Ke Xu, Xu Ma, Lei Wang, Zizheng Cao, Shaohua Yu
  • Opto-Electronic Science
  • 2024-01-09
  • Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
  • Yuting Xiao, Lianwei Chen, Mingbo Pu, Mingfeng Xu, Qi Zhang, Yinghui Guo, Tianqu Chen, Xiangang Luo
  • Opto-Electronic Science
  • 2024-01-05
  • Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry
  • Chunyan Chu, Zhentao Liu, Mingliang Chen, Xuehui Shao, Guohai Situ, Yuejin Zhao, Shensheng Han
  • Opto-Electronic Advances
  • 2023-3-10
  • Flat soliton microcomb source
  • Xinyu Wang, Xuke Qiu, Mulong Liu, Feng Liu, Mengmeng Li, Linpei Xue, Bohan Chen, Mingran Zhang, Peng Xie
  • Opto-Electronic Science
  • 2023-12-29



  • Analysis of the wave functions for accelerating Kerr-Newman metric                                Predicting the CME arrival time based on the recommendation algorithm
    About
    |
    Contact
    |
    Copyright © PubCard