Year
Month
(Peer-Reviewed) Planar peristrophic multiplexing metasurfaces
Jia Chen 陈佳 ¹ ², Dapeng Wang 王大鹏 ¹ ², Guangyuan Si 司光远 ³, Siew Lang Teo ⁴, Qian Wang ⁴, Jiao Lin ⁵
¹ School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
中国 厦门 厦门大学电子科学与技术学院(国家示范性微电子学院)
² Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
中国 厦门 中国福建能源材料科学与技术创新实验室
³ Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton 3168, VIC, Australia
⁴ Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR) 2 Fusionopolis Way, Innovis 08-03, Singapore 138632, Singapore
⁵ School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
Opto-Electronic Advances, 2023-08-31
Abstract

As a promising counterpart of two-dimensional metamaterials, metasurfaces enable to arbitrarily control the wavefront of light at subwavelength scale and hold promise for planar holography and applicable multiplexing devices. Nevertheless, the degrees of freedom (DoF) to orthogonally multiplex data have been almost exhausted.

Compared with state-of-the-art methods that extensively employ the orthogonal basis such as wavelength, polarization or orbital angular momentum, we propose an unprecedented method of peristrophic multiplexing by combining the spatial frequency orthogonality with the subwavelength detour phase principle. The orthogonal relationship between the spatial frequency of incident light and the locally shifted building blocks of metasurfaces can be regarded as an additional DoF. We experimentally demonstrate the viability of the multiplexed holograms.

Moreover, this newly-explored orthogonality is compatible with conventional DoFs. Our findings will contribute to the development of multiplexing metasurfaces and provide a novel solution to nanophotonics, such as large-capacity chip-scale devices and highly integrated communication.
Planar peristrophic multiplexing metasurfaces_1
Planar peristrophic multiplexing metasurfaces_2
Planar peristrophic multiplexing metasurfaces_3
  • Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity
  • Chang-Cun Yan, Zong-Lu Che, Wan-Ying Yang, Xue-Dong Wang, Liang-Sheng Liao
  • Opto-Electronic Advances
  • 2023-07-20
  • Encoding physics to learn reaction–diffusion processes
  • Chengping Rao, Pu Ren, Qi Wang, Oral Buyukozturk, Hao Sun, Yang Liu
  • Nature Machine Intelligence
  • 2023-07-17
  • Accurate medium-range global weather forecasting with 3D neural networks
  • Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, Qi Tian
  • Nature
  • 2023-07-05
  • Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core
  • Jianying Jing, Kun Liu, Junfeng Jiang, Tianhua Xu, Shuang Wang, Tiegen Liu
  • Opto-Electronic Advances
  • 2023-06-25
  • In-flow holographic tomography boosts lipid droplet quantification
  • Michael John Fanous, Aydogan Ozcan
  • Opto-Electronic Advances
  • 2023-06-25
  • The second fusion of laser and aerospace—an inspiration for high energy lasers
  • Xiaojun Xu, Rui Wang, Zining Yang
  • Opto-Electronic Advances
  • 2023-06-25
  • Hot electron electrochemistry at silver activated by femtosecond laser pulses
  • Oskar Armbruster, Hannes Pöhl, Wolfgang Kautek
  • Opto-Electronic Advances
  • 2023-06-25
  • Highly sensitive microfiber ultrasound sensor for photoacoustic imaging
  • Perry Ping Shum, Gerd Keiser, Georges Humbert, Dora Juan Juan Hu, A. Ping Zhang, Lei Su
  • Opto-Electronic Advances
  • 2023-06-25
  • Integral imaging-based tabletop light field 3D display with large viewing angle
  • Yan Xing, Xing-Yu Lin, Lin-Bo Zhang, Yun-Peng Xia, Han-Le Zhang, Hong-Yu Cui, Shuang Li, Tong-Yu Wang, Hui Ren, Di Wang, Huan Deng, Qiong-Hua Wang
  • Opto-Electronic Advances
  • 2023-06-25
  • Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption
  • Zhenyuan Lin, Kuan Liu, Tun Cao, Minghui Hong
  • Opto-Electronic Advances
  • 2023-06-25
  • 4K-DMDNet: diffraction model-driven network for 4K computer-generated holography
  • Kexuan Liu, Jiachen Wu, Zehao He, Liangcai Cao
  • Opto-Electronic Advances
  • 2023-05-30



  • Solar cell-based hybrid energy harvesters towards sustainability                                Advancing nonlinear nanophotonics: harnessing membrane metasurfaces for third-harmonic generation and imaging
    About
    |
    Contact
    |
    Copyright © PubCard