Year
Month
(Peer-Reviewed) Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death
Lvqin Fu ¹, Xianbin Ma ², Yuantong Liu ¹, Zhigang Xu 许志刚 ², Zhijun Sun 孙志军 ¹
¹ The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
中国 武汉 武汉大学口腔医学院 口腔基础医学重点实验室(湖北省科技厅) 口腔生物医学教育部重点实验室
² Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China
中国 重庆 发光与实时分析化学教育部重点实验室 (西南大学) 材料与能源学院 重庆市微纳生物医用材料及器件工程技术研究中心
Abstract

Tumor immunotherapy, especially immune checkpoint blockade (ICB), has revolutionized the cancer field. However, the limited response of tumors to immunotherapy is a major obstacle. Tumor immunogenic cell death (ICD) is a death mode of tumor cells that can promote tumor immunity.

ICD can induce strong antitumor immune responses through the ectopic exposure of calreticulin on the plasma membrane surface and the release of the non-histone nuclear protein high-mobility group box 1 (HMGB1), ATP, and interferon (IFN), thus activating an adaptive immune response against dead cell-associated antigens and enhancing the therapeutic effect of tumor immunotherapy. Chemotherapy, radiotherapy, photothermal therapy, magneto-thermodynamics therapy, nanopulse stimulation, and oncolytic virus therapy can all induce a strong antitumor immune response by ICD.

In addition, the application of nanotechnology can precisely target drug delivery and improve the efficacy of immunotherapy. Here we introduce the basic concepts and molecular mechanisms underlying the induction of ICD. Then, we summarize and discuss the progress in the application of nanotechnology in immunotherapy to promote ICD.

Finally, we attempt to define the challenges and future directions in this area to extend the benefits of ICD to a broader patient population.
Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death_1
Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death_2
Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death_3
Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death_4
  • Power grid fault diagnosis based on a deep pyramid convolutional neural network
  • Xu Zhang 张旭, Huiting Zhang, Dongying Zhang, Yixian Wang, Ruiting Ding, Yuchuan Zheng, Yongxu Zhang
  • CSEE Journal of Power and Energy Systems
  • 2022-05-06
  • China's factor reallocation effect considering energy
  • Guangqing Xu, Xiaoyu Chen
  • Chinese Journal of Population, Resources and Environment
  • 2022-05-02
  • Cannabidiol prevents depressive-like behaviors through the modulation of neural stem cell differentiation
  • Ming Hou, Suji Wang, Dandan Yu, Xinyi Lu, Xiansen Zhao, Zhangpeng Chen, Chao Yan
  • Frontiers of Medicine
  • 2022-04-26
  • Cultivation of gut microorganisms of the marine ascidian Halocynthia roretzi reveals their potential roles in the environmental adaptation of their host
  • Yang Yang, Yuting Zhu, Haiming Liu, Jiankai Wei, Haiyan Yu, Bo Dong
  • Marine Life Science & Technology
  • 2022-04-26
  • Data network traffic analysis and optimization strategy of real-time power grid dynamic monitoring system for wide-frequency measurements
  • Jinsong Li, Hao Liu, Wenzhuo Li, Tianshu Bi, Mingyang Zhao
  • Global Energy Interconnection
  • 2022-04-25
  • Field distribution of the Z₂ topological edge state revealed by cathodoluminescence nanoscopy
  • Xiao He, Donglin Liu, Hongfei Wang, Liheng Zheng, Bo Xu, Biye Xie, Meiling Jiang, Zhixin Liu, Jin Zhang, Minghui Lu, Zheyu Fang
  • Opto-Electronic Advances
  • 2022-04-25
  • Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications
  • Alexey Wolf, Alexander Dostovalov, Kirill Bronnikov, Mikhail Skvortsov, Stefan Wabnitz, Sergey Babin
  • Opto-Electronic Advances
  • 2022-04-25
  • Graphene-empowered dynamic metasurfaces and metadevices
  • Chao Zeng, Hua Lu, Dong Mao, Yueqing Du, He Hua, Wei Zhao, Jianlin Zhao
  • Opto-Electronic Advances
  • 2022-04-25
  • Charge carrier dynamics in different crystal phases of CH₃NH₃PbI₃ perovskite
  • Efthymis Serpetzoglou, Ioannis Konidakis, George Kourmoulakis, Ioanna Demeridou, Konstantinos Chatzimanolis, Christos Zervos, George Kioseoglou, Emmanuel Kymakis, Emmanuel Stratakis
  • Opto-Electronic Science
  • 2022-04-21
  • Applications of optically and electrically driven nanoscale bowtie antennas
  • Zhongjun Jiang, Yingjian Liu, Liang Wang
  • Opto-Electronic Science
  • 2022-04-20
  • Validation of the bodily expressive action stimulus test among Chinese adults and children
  • Yunmei Yang, Wenwen Hou, Jing Li
  • PsyCh Journal
  • 2022-04-17



  • Optical properties and applications of SnS₂ SAs with different thickness                                Intravenous route to choroidal neovascularization by macrophage-disguised nanocarriers for mTOR modulation
    About
    |
    Contact
    |
    Copyright © PubCard