(Peer-Reviewed) In-fiber photoelectric device based on graphene-coated tilted fiber grating
Biqiang Jiang 姜碧强, Yueguo Hou 侯跃国, Jiexing Wu 吴洁星, Yuxin Ma 马育新, Xuetao Gan 甘雪涛, Jianlin Zhao 赵建林
Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
中国 西安 西北工业大学物理科学与技术学院 陕西省基础学科(液体物理)研究中心 光场调控与信息感知工业和信息化部重点实验室
Opto-Electronic Science, 2023-09-07

Graphene and related two-dimensional materials have attracted great research interests due to prominently optical and electrical properties and flexibility in integration with versatile photonic structures. Here, we report an in-fiber photoelectric device by wrapping a few-layer graphene and bonding a pair of electrodes onto a tilted fiber Bragg grating (TFBG) for photoelectric and electric-induced thermo-optic conversions.

The transmitted spectrum from this device consists of a dense comb of narrowband resonances that provides an observable window to sense the photocurrent and the electrical injection in the graphene layer. The device has a wavelength-sensitive photoresponse with responsivity up to 11.4 A/W, allowing the spectrum analysis by real-time monitoring of photocurrent evolution.

Based on the thermal-optic effect of electrical injection, the graphene layer is energized to produce a global red-shift of the transmission spectrum of the TFBG, with a high sensitivity approaching 2.167×104 nm/A2. The in-fiber photoelectric device, therefore as a powerful tool, could be widely available as off-the-shelf product for photodetection, spectrometer and current sensor.
In-fiber photoelectric device based on graphene-coated tilted fiber grating_1
In-fiber photoelectric device based on graphene-coated tilted fiber grating_2
In-fiber photoelectric device based on graphene-coated tilted fiber grating_3
  • Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity
  • Chang-Cun Yan, Zong-Lu Che, Wan-Ying Yang, Xue-Dong Wang, Liang-Sheng Liao
  • Opto-Electronic Advances
  • 2023-07-20
  • Encoding physics to learn reaction–diffusion processes
  • Chengping Rao, Pu Ren, Qi Wang, Oral Buyukozturk, Hao Sun, Yang Liu
  • Nature Machine Intelligence
  • 2023-07-17
  • Accurate medium-range global weather forecasting with 3D neural networks
  • Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, Qi Tian
  • Nature
  • 2023-07-05
  • Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core
  • Jianying Jing, Kun Liu, Junfeng Jiang, Tianhua Xu, Shuang Wang, Tiegen Liu
  • Opto-Electronic Advances
  • 2023-06-25
  • In-flow holographic tomography boosts lipid droplet quantification
  • Michael John Fanous, Aydogan Ozcan
  • Opto-Electronic Advances
  • 2023-06-25
  • The second fusion of laser and aerospace—an inspiration for high energy lasers
  • Xiaojun Xu, Rui Wang, Zining Yang
  • Opto-Electronic Advances
  • 2023-06-25
  • Hot electron electrochemistry at silver activated by femtosecond laser pulses
  • Oskar Armbruster, Hannes Pöhl, Wolfgang Kautek
  • Opto-Electronic Advances
  • 2023-06-25
  • Highly sensitive microfiber ultrasound sensor for photoacoustic imaging
  • Perry Ping Shum, Gerd Keiser, Georges Humbert, Dora Juan Juan Hu, A. Ping Zhang, Lei Su
  • Opto-Electronic Advances
  • 2023-06-25
  • Integral imaging-based tabletop light field 3D display with large viewing angle
  • Yan Xing, Xing-Yu Lin, Lin-Bo Zhang, Yun-Peng Xia, Han-Le Zhang, Hong-Yu Cui, Shuang Li, Tong-Yu Wang, Hui Ren, Di Wang, Huan Deng, Qiong-Hua Wang
  • Opto-Electronic Advances
  • 2023-06-25
  • Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption
  • Zhenyuan Lin, Kuan Liu, Tun Cao, Minghui Hong
  • Opto-Electronic Advances
  • 2023-06-25
  • 4K-DMDNet: diffraction model-driven network for 4K computer-generated holography
  • Kexuan Liu, Jiachen Wu, Zehao He, Liangcai Cao
  • Opto-Electronic Advances
  • 2023-05-30

  • Solar cell-based hybrid energy harvesters towards sustainability
    Copyright © PubCard