Year
Month
(Peer-Reviewed) Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques
Guannan Qian 钱冠男 ¹ ², Junyang Wang 汪君洋 ¹ ³, Hong Li 李泓 ³, Zi-Feng Ma 马紫峰 ², Piero Pianetta ¹, Linsen Li 李林森 ² ⁴, Xiqian Yu 禹习谦 ³, Yijin Liu 刘宜晋 ¹
¹ Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
² Department of Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
中国 上海 上海电化学能源器件工程技术研究中心(SEED),上海交通大学化学化工学院,上海交通大学变革性分子前沿科学中心 200240
³ Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
中国 北京 北京材料基因工程高精尖创新中心,中国科学院可再生能源重点实验室,北京新能源材料与器件重点实验室,中国科学院物理研究所 100190
⁴ Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213 China
中国 成都 上海交通大学四川研究院 610213
National Science Review, 2021-08-17
Abstract

Rechargeable battery technologies have revolutionized the electronics, transportation, and grid energy storage. While many materials are being researched for battery applications, layered transition metal oxides (LTMO) are the dominating cathode candidate with remarkable electrochemical performance. Yet, daunting challenges persist in the quest for further battery developments targeting lower cost, longer lifespan, improved energy density, and enhanced safety. This is in part due to the intrinsic complexity in real-world batteries, featuring sophisticated interplay among microstructural, compositional, and chemical heterogeneities, which motivates tremendous research efforts using state-of-the-art analytical techniques.

In this research field, synchrotron techniques are identified as a suite of effective methods for advanced battery characterization in a nondestructive manner with sensitivities to the lattice, electronic, and morphological structures. This article provides a holistic overview of the cutting-edge developments in synchrotron-based research on LTMO battery cathode materials. We discuss the complexity and evolution of LTMO’s material properties upon battery operation and review recent synchrotron-based research works that address the frontier challenges and provide novel insights in this field. Finally, we formulate a perspective on the future directions of synchrotron-based battery research, involving the next-generation X-ray facilities and advanced computational developments.
Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques_1
Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques_2
Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques_3
Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques_4
  • Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
  • Zhao Zhang, Gaoyuan Li, Yonglei Liu, Haiyun Wang, Bernhard J. Hoenders, Chunhao Liang, Yangjian Cai, Jun Zeng
  • Opto-Electronic Science
  • 2024-01-31
  • Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
  • Xin Ge, Si Chen, Kan Lin, Guangming Ni, En Bo, Lulu Wang, Linbo Liu
  • Opto-Electronic Science
  • 2024-01-31
  • Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
  • Yuncheng Liu, Ke Xu, Xuhao Fan, Xinger Wang, Xuan Yu, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2024-01-25
  • Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
  • Keyao Li, Yiming Wang, Dapu Pi, Baoli Li, Haitao Luan, Xinyuan Fang, Peng Chen, Yanqing Lu, Min Gu
  • Opto-Electronic Advances
  • 2024-01-25
  • Physics-informed deep learning for fringe pattern analysis
  • Wei Yin, Yuxuan Che, Xinsheng Li, Mingyu Li, Yan Hu, Shijie Feng, Edmund Y. Lam, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2024-01-25
  • Advancing computer-generated holographic display thanks to diffraction model-driven deep nets
  • Vittorio Bianco, Pietro Ferraro
  • Opto-Electronic Advances
  • 2024-01-16
  • Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
  • Jiangbo Lyu, Tao Zhu, Yan Zhou, Zhenmin Chen, Yazhi Pi, Zhengtong Liu, Xiaochuan Xu, Ke Xu, Xu Ma, Lei Wang, Zizheng Cao, Shaohua Yu
  • Opto-Electronic Science
  • 2024-01-09
  • Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
  • Yuting Xiao, Lianwei Chen, Mingbo Pu, Mingfeng Xu, Qi Zhang, Yinghui Guo, Tianqu Chen, Xiangang Luo
  • Opto-Electronic Science
  • 2024-01-05
  • Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry
  • Chunyan Chu, Zhentao Liu, Mingliang Chen, Xuehui Shao, Guohai Situ, Yuejin Zhao, Shensheng Han
  • Opto-Electronic Advances
  • 2023-3-10
  • Flat soliton microcomb source
  • Xinyu Wang, Xuke Qiu, Mulong Liu, Feng Liu, Mengmeng Li, Linpei Xue, Bohan Chen, Mingran Zhang, Peng Xie
  • Opto-Electronic Science
  • 2023-12-29
  • Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection
  • Deer Su, Xiangyu Li, Weida Gao, Qiuhua Wei, Haoyu Li, Changliang Guo, Weisong Zhao
  • Opto-Electronic Science
  • 2023-12-28



  • Differential STBC-SM Scheme for Uplink Multi-user Massive MIMO Communications: System Design and Performance Analysis                                A New Interpolation Approach and Corresponding Instance-Based Learning
    About
    |
    Contact
    |
    Copyright © PubCard