Year
Month
(Peer-Reviewed) Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques
Guannan Qian 钱冠男 ¹ ², Junyang Wang 汪君洋 ¹ ³, Hong Li 李泓 ³, Zi-Feng Ma 马紫峰 ², Piero Pianetta ¹, Linsen Li 李林森 ² ⁴, Xiqian Yu 禹习谦 ³, Yijin Liu 刘宜晋 ¹
¹ Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
² Department of Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
中国 上海 上海电化学能源器件工程技术研究中心(SEED),上海交通大学化学化工学院,上海交通大学变革性分子前沿科学中心 200240
³ Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
中国 北京 北京材料基因工程高精尖创新中心,中国科学院可再生能源重点实验室,北京新能源材料与器件重点实验室,中国科学院物理研究所 100190
⁴ Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213 China
中国 成都 上海交通大学四川研究院 610213
National Science Review, 2021-08-17
Abstract

Rechargeable battery technologies have revolutionized the electronics, transportation, and grid energy storage. While many materials are being researched for battery applications, layered transition metal oxides (LTMO) are the dominating cathode candidate with remarkable electrochemical performance. Yet, daunting challenges persist in the quest for further battery developments targeting lower cost, longer lifespan, improved energy density, and enhanced safety. This is in part due to the intrinsic complexity in real-world batteries, featuring sophisticated interplay among microstructural, compositional, and chemical heterogeneities, which motivates tremendous research efforts using state-of-the-art analytical techniques.

In this research field, synchrotron techniques are identified as a suite of effective methods for advanced battery characterization in a nondestructive manner with sensitivities to the lattice, electronic, and morphological structures. This article provides a holistic overview of the cutting-edge developments in synchrotron-based research on LTMO battery cathode materials. We discuss the complexity and evolution of LTMO’s material properties upon battery operation and review recent synchrotron-based research works that address the frontier challenges and provide novel insights in this field. Finally, we formulate a perspective on the future directions of synchrotron-based battery research, involving the next-generation X-ray facilities and advanced computational developments.
Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques_1
Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques_2
Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques_3
Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques_4
  • OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • Taigao Ma, Haozhu Wang, L. Jay Guo
  • Opto-Electronic Advances
  • 2024-07-10
  • Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
  • Xuan Yang, Xinfeng Zhang, Tianxu Zhang, Linyi Xiang, Bin Xie, Xiaobing Luo
  • Opto-Electronic Advances
  • 2024-07-05
  • Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
  • Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
  • Opto-Electronic Advances
  • 2024-07-05
  • Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
  • Yuxin Tian, Boyu Dong, Yaxuan Li, Bing Xiong, Junwen Zhang, Changzheng Sun, Zhibiao Hao, Jian Wang, Lai Wang, Yanjun Han, Hongtao Li, Lin Gan, Nan Chi, Yi Luo
  • Opto-Electronic Science
  • 2024-07-01
  • Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
  • Shasha Li, Yini Fang, Jianfang Wang
  • Opto-Electronic Science
  • 2024-06-28
  • Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots
  • Anir S. Sharbirin, Rebekah E. Kong, Wendy B. Mato, Trang Thu Tran, Eunji Lee, Jolene W. P. Khor, Afrizal L. Fadli, Jeongyong Kim
  • Opto-Electronic Advances
  • 2024-06-28
  • High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses
  • Kotaro Obata, Shota Kawabata, Yasutaka Hanada, Godai Miyaji, Koji Sugioka
  • Opto-Electronic Science
  • 2024-06-24
  • Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution
  • Xin Xu, Qin Luo, Jixiang Wang, Yahui Song, Hong Ye, Xin Zhang, Yi He, Minxuan Sun, Ruobing Zhang, Guohua Shi
  • Opto-Electronic Advances
  • 2024-06-11
  • Seeing at a distance with multicore fibers
  • Haogong Feng, Xi Chen, Runze Zhu, Yifeng Xiong, Ye Chen, Yanqing Lu, Fei Xu
  • Opto-Electronic Advances
  • 2024-06-05
  • NIR-triggered on-site NO/ROS/RNS nanoreactor: Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation
  • Ziqing Xu, Yakun Kang, Jie Zhang, Jiajia Tang, Hanyao Sun, Yang Li, Doudou He, Xuan Sha, Yuxia Tang, Ziyi Fu, Feiyun Wu, Shouju Wang
  • Opto-Electronic Advances
  • 2024-06-05
  • Reconfigurable optical neural networks with Plug-and-Play metasurfaces
  • Yongmin Liu, Yuxiao Li
  • Opto-Electronic Advances
  • 2024-06-04



  • Differential STBC-SM Scheme for Uplink Multi-user Massive MIMO Communications: System Design and Performance Analysis                                A New Interpolation Approach and Corresponding Instance-Based Learning
    About
    |
    Contact
    |
    Copyright © PubCard