Year
Month
(Peer-Reviewed) Digital Predistortion for Concurrent Dual-band Millimeter Wave Analog Multibeam Transmitters
Qian Wu ¹, Jianxin Jing ¹ ², Xiao-Wei Zhu 朱晓维 ¹, Chao Yu 余超 ¹ ³
¹ State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
中国 南京 东南大学毫米波国家重点实验室
² Huawei Technol. Co., Ltd., Shanghai 200120, China
中国 上海 华为技术有限公司
³ Purple Mountain Laboratories, Nanjing 211111, China
中国 南京 紫金山实验室
IEEE Transactions on Circuits and Systems II: Express Briefs, 2021-08-16
Abstract

This brief proposes a novel digital predistortion (DPD) technique to linearize concurrent dual-band millimeter wave (mmWave) analog multibeam transmitters. Beams at the same frequency band give full play to the spatial multiplexing, so as to improve spectrum utilization. By means of detailed analysis of the system characteristics, a DPD model is proposed to effectively eliminate the distortions caused by power amplifiers (PAs) including nonlinearity, memory effect, the intermodulation distortion (IMD) between two different frequency bands, and the multibeam interference incurred in undesirable sidelobes in the main beam direction simultaneously.

To validate the proposed idea, a test bench of mmWave analog multibeam transmitter utilizing Butler matrix was designed, and then it was stimulated by a concurrent dual-band signal at 26.91 GHz and 27.09 GHz, respectively. Compared with existing DPD techniques, the proposed method is suitable for compensating the distortions in dual-band analog multibeam transmitters, which has shown its great potential for the applications in future mmWave concurrent dual-band multibeam wireless communication systems.
Digital Predistortion for Concurrent Dual-band Millimeter Wave Analog Multibeam Transmitters_1
Digital Predistortion for Concurrent Dual-band Millimeter Wave Analog Multibeam Transmitters_2
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07
  • On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
  • Cheng-Long Zheng, Pei-Nan Ni, Yi-Yang Xie, Patrice Genevet
  • Opto-Electronic Advances
  • 2025-01-07
  • Ferroelectric domain engineering of lithium niobate
  • Jackson J. Chakkoria, Aditya Dubey, Arnan Mitchell, Andreas Boes
  • Opto-Electronic Advances
  • 2025-01-03



  • Data Pricing in Machine Learning Pipelines                                Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond
    About
    |
    Contact
    |
    Copyright © PubCard