Year
Month
(Peer-Reviewed) Digital Predistortion for Concurrent Dual-band Millimeter Wave Analog Multibeam Transmitters
Qian Wu ¹, Jianxin Jing ¹ ², Xiao-Wei Zhu 朱晓维 ¹, Chao Yu 余超 ¹ ³
¹ State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
中国 南京 东南大学毫米波国家重点实验室
² Huawei Technol. Co., Ltd., Shanghai 200120, China
中国 上海 华为技术有限公司
³ Purple Mountain Laboratories, Nanjing 211111, China
中国 南京 紫金山实验室
IEEE Transactions on Circuits and Systems II: Express Briefs, 2021-08-16
Abstract

This brief proposes a novel digital predistortion (DPD) technique to linearize concurrent dual-band millimeter wave (mmWave) analog multibeam transmitters. Beams at the same frequency band give full play to the spatial multiplexing, so as to improve spectrum utilization. By means of detailed analysis of the system characteristics, a DPD model is proposed to effectively eliminate the distortions caused by power amplifiers (PAs) including nonlinearity, memory effect, the intermodulation distortion (IMD) between two different frequency bands, and the multibeam interference incurred in undesirable sidelobes in the main beam direction simultaneously.

To validate the proposed idea, a test bench of mmWave analog multibeam transmitter utilizing Butler matrix was designed, and then it was stimulated by a concurrent dual-band signal at 26.91 GHz and 27.09 GHz, respectively. Compared with existing DPD techniques, the proposed method is suitable for compensating the distortions in dual-band analog multibeam transmitters, which has shown its great potential for the applications in future mmWave concurrent dual-band multibeam wireless communication systems.
Digital Predistortion for Concurrent Dual-band Millimeter Wave Analog Multibeam Transmitters_1
Digital Predistortion for Concurrent Dual-band Millimeter Wave Analog Multibeam Transmitters_2
  • OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • Taigao Ma, Haozhu Wang, L. Jay Guo
  • Opto-Electronic Advances
  • 2024-07-10
  • Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
  • Xuan Yang, Xinfeng Zhang, Tianxu Zhang, Linyi Xiang, Bin Xie, Xiaobing Luo
  • Opto-Electronic Advances
  • 2024-07-05
  • Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
  • Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
  • Opto-Electronic Advances
  • 2024-07-05
  • Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
  • Yuxin Tian, Boyu Dong, Yaxuan Li, Bing Xiong, Junwen Zhang, Changzheng Sun, Zhibiao Hao, Jian Wang, Lai Wang, Yanjun Han, Hongtao Li, Lin Gan, Nan Chi, Yi Luo
  • Opto-Electronic Science
  • 2024-07-01
  • Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
  • Shasha Li, Yini Fang, Jianfang Wang
  • Opto-Electronic Science
  • 2024-06-28
  • Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots
  • Anir S. Sharbirin, Rebekah E. Kong, Wendy B. Mato, Trang Thu Tran, Eunji Lee, Jolene W. P. Khor, Afrizal L. Fadli, Jeongyong Kim
  • Opto-Electronic Advances
  • 2024-06-28
  • High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses
  • Kotaro Obata, Shota Kawabata, Yasutaka Hanada, Godai Miyaji, Koji Sugioka
  • Opto-Electronic Science
  • 2024-06-24
  • Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution
  • Xin Xu, Qin Luo, Jixiang Wang, Yahui Song, Hong Ye, Xin Zhang, Yi He, Minxuan Sun, Ruobing Zhang, Guohua Shi
  • Opto-Electronic Advances
  • 2024-06-11
  • Seeing at a distance with multicore fibers
  • Haogong Feng, Xi Chen, Runze Zhu, Yifeng Xiong, Ye Chen, Yanqing Lu, Fei Xu
  • Opto-Electronic Advances
  • 2024-06-05
  • NIR-triggered on-site NO/ROS/RNS nanoreactor: Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation
  • Ziqing Xu, Yakun Kang, Jie Zhang, Jiajia Tang, Hanyao Sun, Yang Li, Doudou He, Xuan Sha, Yuxia Tang, Ziyi Fu, Feiyun Wu, Shouju Wang
  • Opto-Electronic Advances
  • 2024-06-05
  • Reconfigurable optical neural networks with Plug-and-Play metasurfaces
  • Yongmin Liu, Yuxiao Li
  • Opto-Electronic Advances
  • 2024-06-04



  • Data Pricing in Machine Learning Pipelines                                Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond
    About
    |
    Contact
    |
    Copyright © PubCard