(Peer-Reviewed) Effects of low molecular weight organic acids on aggregation behavior of biochar colloids at acid and neutral conditions
Yang Wang 王洋 ¹, Changxi Wang ¹, Jiayi Xiong ¹, Qianru Zhang 张倩茹 ², Jianying Shang 商建英 ¹
¹ College of Land Science and Technology, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, Beijing, 100193, China
中国 北京 中国农业大学土地科学与技术学院 植物-土壤相互作用教育部重点实验室 农业部华北都市农业重点实验室
² Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
中国 北京 中国农业科学院农业资源与农业区划研究所 农业农村部面源污染控制重点实验室
Biochar, 2022-03-23

Low molecular weight organic acids (LMWOAs), as active components in the rhizosphere carbon cycling, may influence the environmental behaviors of biochar colloids. This study selected the pine-wood and wheat-straw biochars (PB and WB) as two typical biochars.

The effects of typical LMWOAs (oxalic acid, citric acid, and malic acid) on aggregation kinetics of PB and WB colloids were investigated under pH 4 and 6 conditions. Critical coagulation concentrations (CCCs) of both PB and WB colloids were decreased with the LMWOAs regardless of the types of biochar and the solution pH, and the most significant effect occurred in pH 4 due to more LMWOAs sorption on the biochar colloids. The different types of LMWOAs caused various CCCs changes. For example, the CCC values of PB colloids decreased from 75 mM to 56, 52, and 47 mM in the pH 4 NaCl solutions when 1 mM oxalic acid, citric acid, and malic acid were present in the suspensions, respectively.

The chemical structure (functional groups) and molecular weight of LMWOAs, solution pH, and the electrophoretic mobility (EPM) of biochar co-influence the interactions between biochar colloids and LMWOAs, thus affecting the stability of biochar colloids in the presence of LMWOAs. The presence of LMWOAs accelerated the aggregation of colloidal biochar by increasing the interaction of surface bridging bonds (hydrogen bonding) and decreasing the repulsive force between colloidal biochar particles.

This study showed that LMWOAs could accelerate the aggregation of biochar colloids in acidic or neutral environments and reduce the mobility of biochar colloids in soil rhizosphere.
Effects of low molecular weight organic acids on aggregation behavior of biochar colloids at acid and neutral conditions_1
Effects of low molecular weight organic acids on aggregation behavior of biochar colloids at acid and neutral conditions_2
Effects of low molecular weight organic acids on aggregation behavior of biochar colloids at acid and neutral conditions_3
Effects of low molecular weight organic acids on aggregation behavior of biochar colloids at acid and neutral conditions_4
  • Power grid fault diagnosis based on a deep pyramid convolutional neural network
  • Xu Zhang 张旭, Huiting Zhang, Dongying Zhang, Yixian Wang, Ruiting Ding, Yuchuan Zheng, Yongxu Zhang
  • CSEE Journal of Power and Energy Systems
  • 2022-05-06
  • China's factor reallocation effect considering energy
  • Guangqing Xu, Xiaoyu Chen
  • Chinese Journal of Population, Resources and Environment
  • 2022-05-02
  • Cannabidiol prevents depressive-like behaviors through the modulation of neural stem cell differentiation
  • Ming Hou, Suji Wang, Dandan Yu, Xinyi Lu, Xiansen Zhao, Zhangpeng Chen, Chao Yan
  • Frontiers of Medicine
  • 2022-04-26
  • Cultivation of gut microorganisms of the marine ascidian Halocynthia roretzi reveals their potential roles in the environmental adaptation of their host
  • Yang Yang, Yuting Zhu, Haiming Liu, Jiankai Wei, Haiyan Yu, Bo Dong
  • Marine Life Science & Technology
  • 2022-04-26
  • Data network traffic analysis and optimization strategy of real-time power grid dynamic monitoring system for wide-frequency measurements
  • Jinsong Li, Hao Liu, Wenzhuo Li, Tianshu Bi, Mingyang Zhao
  • Global Energy Interconnection
  • 2022-04-25
  • Field distribution of the Z₂ topological edge state revealed by cathodoluminescence nanoscopy
  • Xiao He, Donglin Liu, Hongfei Wang, Liheng Zheng, Bo Xu, Biye Xie, Meiling Jiang, Zhixin Liu, Jin Zhang, Minghui Lu, Zheyu Fang
  • Opto-Electronic Advances
  • 2022-04-25
  • Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications
  • Alexey Wolf, Alexander Dostovalov, Kirill Bronnikov, Mikhail Skvortsov, Stefan Wabnitz, Sergey Babin
  • Opto-Electronic Advances
  • 2022-04-25
  • Graphene-empowered dynamic metasurfaces and metadevices
  • Chao Zeng, Hua Lu, Dong Mao, Yueqing Du, He Hua, Wei Zhao, Jianlin Zhao
  • Opto-Electronic Advances
  • 2022-04-25
  • Charge carrier dynamics in different crystal phases of CH₃NH₃PbI₃ perovskite
  • Efthymis Serpetzoglou, Ioannis Konidakis, George Kourmoulakis, Ioanna Demeridou, Konstantinos Chatzimanolis, Christos Zervos, George Kioseoglou, Emmanuel Kymakis, Emmanuel Stratakis
  • Opto-Electronic Science
  • 2022-04-21
  • Applications of optically and electrically driven nanoscale bowtie antennas
  • Zhongjun Jiang, Yingjian Liu, Liang Wang
  • Opto-Electronic Science
  • 2022-04-20
  • Validation of the bodily expressive action stimulus test among Chinese adults and children
  • Yunmei Yang, Wenwen Hou, Jing Li
  • PsyCh Journal
  • 2022-04-17

  • Dynamic Color Transform Networks for Wheat Head Detection                                Single-shot mid-infrared incoherent holography using Lucy-Richardson-Rosen algorithm
    Copyright © PubCard