(Peer-Reviewed) Direct growth of hexagonal boron nitride films on dielectric sapphire substrates by pulsed laser deposition for optoelectronic applications
Gaokai Wang 王高凯 ¹ ², Jingren Chen 陈镜壬 ¹ ², Junhua Meng 孟军华 ³, Zhigang Yin 尹志岗 ¹ ², Ji Jiang 江季 ¹ ², Yan Tian 田琰 ¹ ², Jingzhen Li 李景祯 ¹ ², Jinliang Wu 吴金良 ¹ ², Peng Jin 金鹏 ¹ ², Xingwang Zhang 张兴旺 ¹ ²
¹ Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
中国 北京 中国科学院半导体研究所 半导体材料科学重点实验室
² Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
中国 北京 中国科学院大学材料科学与光电子工程中心
³ Faculty of Science, Beijing University of Technology, Beijing, 100124, China
中国 北京 北京工业大学理学部
Abstract
Recently, hexagonal boron nitride (h-BN), an ultra-wide bandgap semiconductor, has attracted considerable attention owing to its excellent properties. In thin films grown on metal catalysts, contamination and damage induced by a transfer process cannot be avoided. Therefore, synthesizing h-BN films on non-catalytic dielectric substrates is desirable for electronic applications.
In this study, we demonstrate the direct growth of high-quality h-BN films with a controllable thickness on sapphire substrates by using the pulsed laser deposition (PLD) technique. The effects of the deposition conditions and laser parameters on the growth of the h-BN films are systematically investigated by evaluating their characteristic Raman peaks. Among the various growth parameters studied, the substrate temperature has the greatest influence on the crystalline quality of the h-BN films, and the optimal pressure varies depending on the target-substrate distance.
The h-BN film grown under optimal conditions exhibits a narrow Raman line width of ∼30 cm⁻¹, indicating a high crystalline quality. The photodetectors fabricated from the PLD-grown h-BN films exhibit superior deep-ultraviolet detection performance with a large on/off ratio of >10⁴, high photoresponsivity, and a sharp cut-off wavelength of 220 nm. This study presents the possibility of producing high-quality h-BN films by applying PLD on dielectric substrates for optoelectronic applications.
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
Opto-Electronic Advances
2025-05-27
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
Opto-Electronic Advances
2025-05-27
Integrated photonic polarizers with 2D reduced graphene oxide
Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
Opto-Electronic Science
2025-05-22
Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
Opto-Electronic Science
2025-04-25