Year
Month

(Peer-Reviewed) A combined multiscale modeling and experimental study on surface modification of high-volume micro-nanoparticles with atomic accuracy
Zoushuang Li 李邹霜 ¹, Junren Xiang 向俊任 ¹ ⁵, Xiao Liu 刘潇 ¹, Xiaobo Li 李小波 ², Lijie Li ³, Bin Shan 单斌 ⁴, Rong Chen 陈蓉 ¹
¹ State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People's Republic of China
中国 湖北 武汉 华中科技大学机械科学与工程学院 数字制造装备与技术国家重点实验室
² School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
中国 湖北 武汉 华中科技大学能源与动力工程学院
³ College of Engineering, Swansea University, SA18 EN Swansea, United Kingdom
⁴ State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
中国 湖北 武汉 华中科技大学材料科学与工程学院 材料成形与模具技术国家重点实验室
⁵ Wuhan University of Technology, Wuhan, Hubei 430063, People's Rep
中国 湖北 武汉 武汉理工大学
Abstract

Surface modification for micro-nanoparticles at the atomic and close-to-atomic scales is of great importance to enhance their performance in various applications, including high-volume battery, persistent luminescence, etc. Fluidized bed atomic layer deposition (FB-ALD) is a promising atomic-scale manufacturing technology that offers ultrathin films on large amounts of particulate materials. Nevertheless, nanoparticles tend to agglomerate due to the strong cohesive forces, which is much unfavorable to the film conformality and also hinders their real applications.

In this paper, the particle fluidization process in an ultrasonic vibration-assisted FB-ALD reactor is numerically investigated from micro-scale to macro-scale through the multiscale computational fluid dynamics and discrete element method (CFD-DEM) modeling with experimental verification. Various vibration amplitudes and frequencies are investigated in terms of their effects on the fluid dynamics, distribution of particle velocity and solid volume fraction, as well as the size of agglomerates. Results show that the fluid turbulent kinetic energy, which is the key power source for the particles to obtain the kinetic energy for overcoming the interparticle agglomeration forces, can be strengthened obviously by the ultrasonic vibration.

Besides, the application of ultrasonic vibration is found to reduce the mean agglomerate size in the FB. This is bound to facilitate the heat transfer and precursor diffusion in the entire FB-ALD reactor and the agglomerates, which can largely shorten the coating time and improve the film conformality as well as precursor utilization. The simulation results also agree well with our battery experimental results, verifying the validity of the multiscale CFD-DEM model. This work has provided momentous guidance to the mass manufacturing of atomic-scale particle coating from lab-scale to industrial applications.
A combined multiscale modeling and experimental study on surface modification of high-volume micro-nanoparticles with atomic accuracy_1
A combined multiscale modeling and experimental study on surface modification of high-volume micro-nanoparticles with atomic accuracy_2
A combined multiscale modeling and experimental study on surface modification of high-volume micro-nanoparticles with atomic accuracy_3
A combined multiscale modeling and experimental study on surface modification of high-volume micro-nanoparticles with atomic accuracy_4
  • Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization
  • Yi Zheng, Hao-Ran Zhang, Xiao-Wei Li, You-Ran Zhao, Zhao-Song Li, Ye-Hao Hou, Chao Liu, Qiong-Hua Wang
  • Opto-Electronic Advances
  • 2025-06-19
  • Cascaded metasurfaces for adaptive aberration correction
  • Lei Zhang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2025-05-27
  • Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
  • Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
  • Opto-Electronic Advances
  • 2025-05-27
  • Spectrally extended line field optical coherence tomography angiography
  • Si Chen, Kan Lin, Xi Chen, Yukun Wang, Chen Hsin Sun, Jia Qu, Xin Ge, Xiaokun Wang, Linbo Liu
  • Opto-Electronic Advances
  • 2025-05-27
  • Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
  • Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
  • Opto-Electronic Advances
  • 2025-05-27
  • Integrated photonic polarizers with 2D reduced graphene oxide
  • Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
  • Opto-Electronic Science
  • 2025-05-22
  • Tip-enhanced Raman scattering of glucose molecules
  • Zhonglin Xie, Chao Meng, Donghua Yue, Lei Xu, Ting Mei, Wending Zhang
  • Opto-Electronic Science
  • 2025-05-22
  • Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
  • Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
  • Opto-Electronic Science
  • 2025-04-25
  • Reconfigurable origami chiral response for holographic imaging and information encryption
  • Zhibiao Zhu, Yongfeng Li, Jiafu Wang, Ze Qin, Lixin Jiang, Yang Chen, Shaobo Qu
  • Opto-Electronic Science
  • 2025-04-25
  • Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage
  • Xingdong Feng, Tianqi Zhang, Xuejun Liu, Fan Zhang, Jianjun Wang, Hong Bao, Shan Jiang, YongAn Huang
  • Opto-Electronic Advances
  • 2025-04-02
  • Phase reconstruction via metasurface-integrated quantum analog operation
  • Qiuying Li, Minggui Liang, Shuoqing Liu, Jiawei Liu, Shizhen Chen, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Advances
  • 2025-04-02
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31



  • Intelligent metaphotonics empowered by machine learning        Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion
    About
    |
    Contact
    |
    Copyright © PubCard