Year
Month

(Peer-Reviewed) Hydrodynamic Coefficient Investigation on a Partial Permeable Stepped Breakwater Under Regular Waves
Zegao Yin 尹则高 ¹ ², Zihan Zheng 郑子涵 ¹, Ning Yu 于宁 ¹, Haojian Wang ¹
¹ Engineering College, Ocean University of China, Qingdao, 266100, China
中国 青岛 中国海洋大学工程学院
² Shandong Province Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao, 266100, China
中国 青岛 中国海洋大学山东省海洋工程重点实验室
Abstract

Traditional breakwater takes the advantage of high protection performance and has been widely used. However, it contributes to high wave reflection in the seaside direction and poor water exchange capacity between open seawater and an inside harbor. Consequently, a partially permeable stepped breakwater (PPSB) is proposed to ensure safety and good water exchange capacity for an inside harbor, and a 3-D computational fluid dynamics (CFD) mathematical model was used to investigate the hydrodynamic coefficients using Reynolds-Averaged Navier-Stokes equations, Re-Normalization Group (RNG) k-ε equations, and the VOF technique.

A series of experiments are conducted to measure the wave heights for validating the mathematical model, and a series of dimensionless parameters considering wave and PPSB effects were presented to assess their relationships with hydrodynamic coefficients, respectively. With the increase in the reciprocal value of PPSB slope, incident wave steepness and permeable ratio below still water level (SWL), the wave reflection coefficient decreases. The wave transmission coefficient decreases with an increase in the reciprocal value of the PPSB slope and incident wave steepness; however, it increases with the increase in the permeable ratio below SWL.

With increases in the reciprocal value of the PPSB slope, permeable ratio below SWL and incident wave steepness for relatively high wave period scenarios, the wave energy dissipation coefficient increases; however, it decreases slightly with increases in the incident wave steepness for the smallest wave period scenarios. Furthermore, simple prediction formulas are conducted for predicting the hydrodynamic coefficients and they are well validated with the related data.
Hydrodynamic Coefficient Investigation on a Partial Permeable Stepped Breakwater Under Regular Waves_1
Hydrodynamic Coefficient Investigation on a Partial Permeable Stepped Breakwater Under Regular Waves_2
Hydrodynamic Coefficient Investigation on a Partial Permeable Stepped Breakwater Under Regular Waves_3
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31
  • Quantitative detection of trace nanoplastics (down to 50 nm) via surface-enhanced raman scattering based on the multiplex-feature coffee ring
  • Xinao Lin, Fengcai Lei, Xiu Liang, Yang Jiao, Xiaofei Zhao, Zhen Li, Chao Zhang, Jing Yu
  • Opto-Electronic Advances
  • 2025-03-28
  • Tunable vertical cavity microlasers based on MAPbI₃ phase change perovskite
  • Rongzi Wang, Ying Su, Hongji Fan, Chengxiang Qi, Shuang Zhang, Tun Cao
  • Opto-Electronic Advances
  • 2025-03-28
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22



  • Identification of Antarctic minke and killer whales with passive acoustic monitoring in Prydz Bay, Antarctica        Flexible rotation of transverse optical field for 2D self-accelerating beams with a designated trajectory
    About
    |
    Contact
    |
    Copyright © PubCard