(Peer-Reviewed) Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
Shasha Li 李莎莎 ¹, Yini Fang 方旖旎 ², Jianfang Wang 王建方 ²
¹ School of Integrated Circuits, Sun Yat-sen University, Shenzhen 518107, China
中国 深圳 中山大学集成电路学院
² Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
中国 香港 香港中文大学物理系
Opto-Electronic Science
, 2024-06-28
Abstract
Light–matter interactions in two-dimensional (2D) materials have been the focus of research since the discovery of graphene. The light–matter interaction length in 2D materials is, however, much shorter than that in bulk materials owing to the atomic nature of 2D materials. Plasmonic nanostructures are usually integrated with 2D materials to enhance the light–matter interactions, offering great opportunities for both fundamental research and technological applications.
Nanoparticle-on-mirror (NPoM) structures with extremely confined optical fields are highly desired in this aspect. In addition, 2D materials provide a good platform for the study of plasmonic fields with subnanometer resolution and quantum plasmonics down to the characteristic length scale of a single atom. A focused and up-to-date review article is highly desired for a timely summary of the progress in this rapidly growing field and to encourage more research efforts in this direction. In this review, we will first introduce the basic concepts of plasmonic modes in NPoM structures. Interactions between plasmons and quasi-particles in 2D materials, e.g., excitons and phonons, from weak to strong coupling and potential applications will then be described in detail.
Related phenomena in subnanometer metallic gaps separated by 2D materials, such as quantum tunneling, will also be touched. We will finally discuss phenomena and physical processes that have not been understood clearly and provide an outlook for future research. We believe that the hybrid systems of 2D materials and NPoM structures will be a promising research field in the future.
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
Opto-Electronic Advances
2025-05-27
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
Opto-Electronic Advances
2025-05-27
Integrated photonic polarizers with 2D reduced graphene oxide
Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
Opto-Electronic Science
2025-05-22
Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
Opto-Electronic Science
2025-04-25