Year
Month

(Peer-Reviewed) Identification of proteins associated with Fusarium crown rot resistance in wheat using label-free quantification analysis
JIN Jing-jing 金京京 ¹ ², DUAN Shuo-nan 段硕楠 ³, QI Yong-zhi 齐永志 ¹ ², ZHEN Wen-chao 甄文超 ² ⁴, MA Jun 马骏 ³
¹ College of Plant Protection, Hebei Agricultural University, Baoding 071001, P.R.China
中国 保定 河北农业大学植物保护学院
² State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, P.R.China
中国 保定 华北作物改良与调控国家重点实验室
³ College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P.R.China
中国 北京 中国农业大学农学与生物技术学院
⁴ College of Agronomy, Hebei Agricultural University, Baoding 071001, P.R.China
中国 保定 河北农业大学农学院
Abstract

Fusarium crown rot (FCR), typically caused by Fusarium pseudograminearum, is a severe soil-borne disease that, in recent years, has become an emerging threat to Chinese wheat crops. For the first time in this study, we investigated and compared the proteomic characteristics of two Chinese wheat varieties (04 Zhong 36 and Xinmai 26) at 24, 48, and 72 h post-inoculation using label-free quantitative proteomic analysis.

A total of 9 234 proteins were successfully quantified, of which 783 were differentially expressed after inoculation. These proteins were mainly involved in metabolic, single-organism, and cellular processes. Thirty-three proteins associated with defense, cell wall formation, photosynthesis, etc., showed consistently different expression between the two genotypes at multiple time points. In particular, chitinase, which degrades chitin in the fungal cell wall and limits fungal growth, was exclusively and consistently upregulated in 04 Zhong 36 across the three time points. Other proteins such as flavonoid O-methyltransferase, glycosyltransferase, and peroxidase were only upregulated in 04 Zhong 36, and proteins, including the berberine bridge enzyme and rubisco large subunit-binding protein, were specifically downregulated in Xinmai 26.

The expression of transcripts encoding eight selected proteins through qRT-PCR analysis supported the proteomic profiles. Overall, the results of this study allow us to understand FCR resistance in wheat at the protein level. Some proteins and their corresponding genes may be useful resources for the genetic improvement of FCR resistance in wheat.
Identification of proteins associated with Fusarium crown rot resistance in wheat using label-free quantification analysis_1
Identification of proteins associated with Fusarium crown rot resistance in wheat using label-free quantification analysis_2
Identification of proteins associated with Fusarium crown rot resistance in wheat using label-free quantification analysis_3
Identification of proteins associated with Fusarium crown rot resistance in wheat using label-free quantification analysis_4
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31
  • Quantitative detection of trace nanoplastics (down to 50 nm) via surface-enhanced raman scattering based on the multiplex-feature coffee ring
  • Xinao Lin, Fengcai Lei, Xiu Liang, Yang Jiao, Xiaofei Zhao, Zhen Li, Chao Zhang, Jing Yu
  • Opto-Electronic Advances
  • 2025-03-28
  • Tunable vertical cavity microlasers based on MAPbI₃ phase change perovskite
  • Rongzi Wang, Ying Su, Hongji Fan, Chengxiang Qi, Shuang Zhang, Tun Cao
  • Opto-Electronic Advances
  • 2025-03-28
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22



  • Effect of Cu-Rich Phase Precipitation on the Microstructure and Mechanical Properties of CoCrNiCux Medium-Entropy Alloys Prepared via Laser Directed Energy Deposition        Effect of biochar applied with plant growth-promoting rhizobacteria (PGPR) on soil microbial community composition and nitrogen utilization in tomato
    About
    |
    Contact
    |
    Copyright © PubCard