Year
Month

(Peer-Reviewed) Soft and Disordered Hyperuniform Elastic Metamaterials for Highly Efficient Vibration Concentration
Hanchuan Tang ¹, Zhuoqun Hao ¹, Ying Liu ¹, Ye Tian ¹, Hao Niu 牛浩 ¹, Jianfeng Zang 臧剑锋 ¹ ²
¹ School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China 华中科技大学 光学与电子信息学院 武汉光电国家实验室
² The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China 华中科技大学 数字制造装备与技术国家重点实验室
National Science Review , 2021-07-29
Abstract

Vibrations, which widely exist throughout the world, could be a nearly endless and locally obtained green energy source. It has been a long-standing challenge to efficiently utilize the dispersed vibration energy especially within the high frequency range, since the amplitudes of high frequency vibrations in local parts of objects are relatively weak.

Here, for the first time, we proposed a soft and disordered hyperuniform elastic metamaterial (DHEM), achieving a remarkable concentration of vibrations in broad frequency bands by a maximum enhancement factor of ∼4000 at 1930 Hz. The DHEM with rational sizes from ∼1 cm to ∼1000 cm covers a broad range of frequencies from ∼10 Hz to ∼10 kHz, which are emitted by many vibration sources including domestic appliances, factories and transportation systems, for example.

Moreover, the performance of soft DHEM under deformation is validated, enabling conformal attachments on uneven objects. Our findings lay the groundwork for reducing traditional energy consumption by recovering some of the energy dissipated by devices in the working world.
Soft and Disordered Hyperuniform Elastic Metamaterials for Highly Efficient Vibration Concentration_1
Soft and Disordered Hyperuniform Elastic Metamaterials for Highly Efficient Vibration Concentration_2
Soft and Disordered Hyperuniform Elastic Metamaterials for Highly Efficient Vibration Concentration_3
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31
  • Quantitative detection of trace nanoplastics (down to 50 nm) via surface-enhanced raman scattering based on the multiplex-feature coffee ring
  • Xinao Lin, Fengcai Lei, Xiu Liang, Yang Jiao, Xiaofei Zhao, Zhen Li, Chao Zhang, Jing Yu
  • Opto-Electronic Advances
  • 2025-03-28
  • Tunable vertical cavity microlasers based on MAPbI₃ phase change perovskite
  • Rongzi Wang, Ying Su, Hongji Fan, Chengxiang Qi, Shuang Zhang, Tun Cao
  • Opto-Electronic Advances
  • 2025-03-28
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22



  • The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary        Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256QAM millimeter-wave wireless communications by time-domain digital coding metasurface
    About
    |
    Contact
    |
    Copyright © PubCard