(Peer-Reviewed) Differential STBC-SM Scheme for Uplink Multi-user Massive MIMO Communications: System Design and Performance Analysis
Jing Zhu ¹, Lixia Xiao 肖丽霞 ², Pei Xiao 肖培 ³, Atta ul Quddus ⁴, Chang He ⁵, Lei Lu ⁶
¹ Guild, Surrey, United Kingdom of Great Britain and Northern Ireland
² Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 12443 Wuhan, Hubei, China, 430074
中国 湖北 武汉 华中科技大学武汉光电国家实验室
³ Faculty of Engineering & Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom of Great Britain and Northern Ireland, GU2 7XH
⁴ CCSR (Centre for Communication Systems Research), University of Surrey, Guildford, Surrey, United Kingdom of Great Britain and Northern Ireland, GU2 7XH
⁵ Shanghai 上海
⁶ Wireless Network RAN Research Department, Shanghai Huawei Technologies, Shanghai, Shanghai, China
中国 上海 上海华为技术有限公司无线网络研究部
IEEE Transactions on Vehicular Technology
, 2021-08-12
Abstract
In this paper, a novel differential space-time block coded spatial modulation (differential STBC-SM) is proposed for uplink multi-user massive multiple-input multiple-output (MIMO) communications, which combines the concept of differential coding and STBC-SM to enhance the diversity benefits in the absence of the channel state information (CSI).
The transmission structure of the proposed system is on a block basis, where each block contains two sub-blocks. More specifically, the first sub-block only conveys amplitude and phase modulation (APM) symbol bits, since its transmit antennas (TAs) obey a pre-designed activation pattern, which do not carry any information bit. For the second sub-block, the input bits are modulated to STBCSM matrices, which are then differentially coded between two adjacent sub-blocks. Moreover, a novel block-by-block based non-coherent detector is presented.
Finally, we derive an upper bound on the average bit error probability (ABEP) by using the moment generating function (MGF). Our simulation results show that the proposed differential STBC-SM transmission structure is able to acquire considerable bit error rate (BER) performance improvements compared to both the conventional differential spatial modulation (DSM) and differential Alamouti schemes.
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
Opto-Electronic Advances
2025-05-27
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
Opto-Electronic Advances
2025-05-27
Integrated photonic polarizers with 2D reduced graphene oxide
Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
Opto-Electronic Science
2025-05-22
Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
Opto-Electronic Science
2025-04-25