Year
Month

(Peer-Reviewed) An intelligent light-managing ionic skin for UV-protection, IR stealth, and optical camouflaged Morse codes
Xiaofang Shi 时晓芳 ¹ ³, Zhouyue Lei 雷周玥 ², Peiyi Wu 武培怡 ¹ ³
¹ State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
中国 上海 东华大学化学化工与生物工程学院 纤维材料改性国家重点实验室 先进低维材料中心
² John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
³ State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
中国 上海 复旦大学高分子科学系 聚合物分子工程国家重点实验室
Abstract

Ionic skins that demonstrate great advantages in the mechanical properties and multiple sensory capabilities are regarded as an attractive candidate to mimic functions of human skin. However, human skin is vulnerable to be damaged under long-time sunlight irradiation, and most of the current ionic skins also lack a protection against harmful ultraviolet and infrared lights. Herein, this work develops a multifunctional ionic skin based on ionic conductive and light-managing hydrogels via a facile one-step locally confined polymerization.

It is mechanically adaptable, able to modulate light in the broadband solar spectrum, and protect human skin from the harmful ultraviolet and infrared lights. Moreover, without complicated processing, the ionic skin enables human-machine interactions via wireless and optical camouflaged Morse codes. We believe this work will promote the development of smart wearable devices with multiple customizable functions.
An intelligent light-managing ionic skin for UV-protection, IR stealth, and optical camouflaged Morse codes_1
An intelligent light-managing ionic skin for UV-protection, IR stealth, and optical camouflaged Morse codes_2
An intelligent light-managing ionic skin for UV-protection, IR stealth, and optical camouflaged Morse codes_3
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31
  • Quantitative detection of trace nanoplastics (down to 50 nm) via surface-enhanced raman scattering based on the multiplex-feature coffee ring
  • Xinao Lin, Fengcai Lei, Xiu Liang, Yang Jiao, Xiaofei Zhao, Zhen Li, Chao Zhang, Jing Yu
  • Opto-Electronic Advances
  • 2025-03-28
  • Tunable vertical cavity microlasers based on MAPbI₃ phase change perovskite
  • Rongzi Wang, Ying Su, Hongji Fan, Chengxiang Qi, Shuang Zhang, Tun Cao
  • Opto-Electronic Advances
  • 2025-03-28
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22



  • The anisotropic p-capacity and the anisotropic Minkowski inequality        Effect of Cu-Rich Phase Precipitation on the Microstructure and Mechanical Properties of CoCrNiCux Medium-Entropy Alloys Prepared via Laser Directed Energy Deposition
    About
    |
    Contact
    |
    Copyright © PubCard