Year
Month

(Peer-Reviewed) Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer
Shishuai Wen ¹ ², Yi Luo ¹ ², Weili Wu 吴伟力 ³, Tingting Zhang 张婷婷 ¹ ², Yichen Yang ¹ ², Qinghai Ji 嵇庆海 ¹ ², Yijun Wu 邬一军 ⁴, Rongliang Shi 史荣亮 ¹ ², Ben Ma 马奔 ¹ ², Midie Xu 许蜜蝶 ⁵, Ning Qu 渠宁 ¹ ²
¹ Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
中国 上海 复旦大学附属肿瘤医院 头颈外科
² Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
中国 上海 复旦大学上海医学院 肿瘤学系
³ Department of Surgical Oncology, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
中国 温州 温州医科大学附属第三医院 肿瘤外科
⁴ Department of Thyroid Surgery, Zhejiang University, School of Medicine, The First Affiliated Hospital, Hangzhou 310003, China
中国 杭州 浙江大学医学院附属第一医院 甲状腺外科
⁵ Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
中国 上海 复旦大学附属肿瘤医院 病理科
Abstract

Lipid metabolism plays important roles not only in the structural basis and energy supply of healthy cells but also in the oncogenesis and progression of cancers. In this study, we investigated the prognostic value of lipid metabolism-related genes in papillary thyroid cancer (PTC).

The recurrence predictive gene signature was developed and internally and externally validated based on PTC datasets including The Cancer Genome Atlas (TCGA) and GSE33630 datasets. Univariate, LASSO, and multivariate Cox regression analysis were applied to assess prognostic genes and build the prognostic gene signature. The expression profiles of prognostic genes were further determined by immunohistochemistry of tissue microarray using in-house cohorts, which enrolled 97 patients. Kaplan–Meier curve, time-dependent receiver operating characteristic curve, nomogram, and decision curve analyses were used to assess the performance of the gene signature.

We identified four recurrence-related genes, PDZK1IP1, TMC3, LRP2 and KCNJ13, and established a four-gene signature recurrence risk model. The expression profiles of the four genes in the TCGA and in-house cohort indicated that stage T1/T2 PTC and locally advanced PTC exhibit notable associations not only with clinicopathological parameters but also with recurrence. Calibration analysis plots indicate the excellent predictive performance of the prognostic nomogram constructed based on the gene signature.

Single-sample gene set enrichment analysis showed that high-risk cases exhibit changes in several important tumorigenesis-related pathways, such as the intestinal immune network and the p53 and Hedgehog signaling pathways. Our results indicate that lipid metabolism-related gene profiling represents a potential marker for prognosis and treatment decisions for PTC patients.
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_1
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_2
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_3
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_4
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31
  • Quantitative detection of trace nanoplastics (down to 50 nm) via surface-enhanced raman scattering based on the multiplex-feature coffee ring
  • Xinao Lin, Fengcai Lei, Xiu Liang, Yang Jiao, Xiaofei Zhao, Zhen Li, Chao Zhang, Jing Yu
  • Opto-Electronic Advances
  • 2025-03-28
  • Tunable vertical cavity microlasers based on MAPbI₃ phase change perovskite
  • Rongzi Wang, Ying Su, Hongji Fan, Chengxiang Qi, Shuang Zhang, Tun Cao
  • Opto-Electronic Advances
  • 2025-03-28
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22



  • Hybrid artificial neural networks and analytical model for prediction of optical constants and bandgap energy of 3D nanonetwork silicon structures        Comprehensive annotation of the Chinese tree shrew genome by large-scale RNA sequencing and long-read isoform sequencing
    About
    |
    Contact
    |
    Copyright © PubCard