Year
Month

(Peer-Reviewed) Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer
Shishuai Wen ¹ ², Yi Luo ¹ ², Weili Wu 吴伟力 ³, Tingting Zhang 张婷婷 ¹ ², Yichen Yang ¹ ², Qinghai Ji 嵇庆海 ¹ ², Yijun Wu 邬一军 ⁴, Rongliang Shi 史荣亮 ¹ ², Ben Ma 马奔 ¹ ², Midie Xu 许蜜蝶 ⁵, Ning Qu 渠宁 ¹ ²
¹ Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
中国 上海 复旦大学附属肿瘤医院 头颈外科
² Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
中国 上海 复旦大学上海医学院 肿瘤学系
³ Department of Surgical Oncology, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
中国 温州 温州医科大学附属第三医院 肿瘤外科
⁴ Department of Thyroid Surgery, Zhejiang University, School of Medicine, The First Affiliated Hospital, Hangzhou 310003, China
中国 杭州 浙江大学医学院附属第一医院 甲状腺外科
⁵ Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
中国 上海 复旦大学附属肿瘤医院 病理科
Abstract

Lipid metabolism plays important roles not only in the structural basis and energy supply of healthy cells but also in the oncogenesis and progression of cancers. In this study, we investigated the prognostic value of lipid metabolism-related genes in papillary thyroid cancer (PTC).

The recurrence predictive gene signature was developed and internally and externally validated based on PTC datasets including The Cancer Genome Atlas (TCGA) and GSE33630 datasets. Univariate, LASSO, and multivariate Cox regression analysis were applied to assess prognostic genes and build the prognostic gene signature. The expression profiles of prognostic genes were further determined by immunohistochemistry of tissue microarray using in-house cohorts, which enrolled 97 patients. Kaplan–Meier curve, time-dependent receiver operating characteristic curve, nomogram, and decision curve analyses were used to assess the performance of the gene signature.

We identified four recurrence-related genes, PDZK1IP1, TMC3, LRP2 and KCNJ13, and established a four-gene signature recurrence risk model. The expression profiles of the four genes in the TCGA and in-house cohort indicated that stage T1/T2 PTC and locally advanced PTC exhibit notable associations not only with clinicopathological parameters but also with recurrence. Calibration analysis plots indicate the excellent predictive performance of the prognostic nomogram constructed based on the gene signature.

Single-sample gene set enrichment analysis showed that high-risk cases exhibit changes in several important tumorigenesis-related pathways, such as the intestinal immune network and the p53 and Hedgehog signaling pathways. Our results indicate that lipid metabolism-related gene profiling represents a potential marker for prognosis and treatment decisions for PTC patients.
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_1
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_2
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_3
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_4
  • Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization
  • Yi Zheng, Hao-Ran Zhang, Xiao-Wei Li, You-Ran Zhao, Zhao-Song Li, Ye-Hao Hou, Chao Liu, Qiong-Hua Wang
  • Opto-Electronic Advances
  • 2025-06-19
  • Cascaded metasurfaces for adaptive aberration correction
  • Lei Zhang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2025-05-27
  • Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
  • Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
  • Opto-Electronic Advances
  • 2025-05-27
  • Spectrally extended line field optical coherence tomography angiography
  • Si Chen, Kan Lin, Xi Chen, Yukun Wang, Chen Hsin Sun, Jia Qu, Xin Ge, Xiaokun Wang, Linbo Liu
  • Opto-Electronic Advances
  • 2025-05-27
  • Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
  • Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
  • Opto-Electronic Advances
  • 2025-05-27
  • Integrated photonic polarizers with 2D reduced graphene oxide
  • Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
  • Opto-Electronic Science
  • 2025-05-22
  • Tip-enhanced Raman scattering of glucose molecules
  • Zhonglin Xie, Chao Meng, Donghua Yue, Lei Xu, Ting Mei, Wending Zhang
  • Opto-Electronic Science
  • 2025-05-22
  • Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
  • Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
  • Opto-Electronic Science
  • 2025-04-25
  • Reconfigurable origami chiral response for holographic imaging and information encryption
  • Zhibiao Zhu, Yongfeng Li, Jiafu Wang, Ze Qin, Lixin Jiang, Yang Chen, Shaobo Qu
  • Opto-Electronic Science
  • 2025-04-25
  • Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage
  • Xingdong Feng, Tianqi Zhang, Xuejun Liu, Fan Zhang, Jianjun Wang, Hong Bao, Shan Jiang, YongAn Huang
  • Opto-Electronic Advances
  • 2025-04-02
  • Phase reconstruction via metasurface-integrated quantum analog operation
  • Qiuying Li, Minggui Liang, Shuoqing Liu, Jiawei Liu, Shizhen Chen, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Advances
  • 2025-04-02
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31



  • Hybrid artificial neural networks and analytical model for prediction of optical constants and bandgap energy of 3D nanonetwork silicon structures        Comprehensive annotation of the Chinese tree shrew genome by large-scale RNA sequencing and long-read isoform sequencing
    About
    |
    Contact
    |
    Copyright © PubCard