Year
Month

(Peer-Reviewed) Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials
Zijun He ¹ ², Zheng Qi ³, Huichao Liu ⁴, Kangyan Wang ¹, Leslie Roberts ⁵ ⁶, Jefferson Z Liu ⁷, Yilun Liu 刘益伦 ⁴, Stephen J Wang 王佳 ⁸ ⁹, Mark J Cook ⁶, George P Simon ², Ling Qiu 丘陵 ² ¹⁰, Dan Li 李丹 ¹ ²
¹ Department of Chemical Engineering, The University of Melbourne, Melbourne 3010, Australia
² Department of Materials Science and Engineering, Monash University, Melbourne 3800, Australia
³ Department of Chemical Engineering, Monash University, Melbourne 3800, Australia
⁴ State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049 China
中国 西安 西安交通大学航天航空学院 机械结构强度与振动国家重点实验室
⁵ Neurophysiology Department, Department of Neurology & Neurological Research, St Vincent's Hospital, Melbourne 3065, Australia
⁶ 6Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne 3010, Australia
⁷ Department of Mechanical Engineering, University of Melbourne, Melbourne 3010, Australia
⁸ Department of Design, Monash University, Melbourne 3145, Australia
⁹ School of Design, The Hong Kong Polytechnic University, Hong Kong, China
中国 香港 香港理工大学设计学院
¹⁰ Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
中国 深圳 清华-伯克利深圳学院 深圳盖姆石墨烯中心
National Science Review , 2021-10-05
Abstract

Human bodily movements are primarily controlled by the contractions of skeletal muscles. Unlike joint or skeletal movements that generally perform in the large displacement range, the contractions of the skeletal muscles that underpin these movements are subtle in intensity yet high in frequency. This subtlety of movement makes it a formidable challenge to develop wearable yet durable soft materials to electrically monitor such motions with high-fidelity such as for muscle/neuromuscular disease diagnosis.

Here we report that an intrinsically fragile ultralow-density graphene-based cellular monolith sandwiched between silicone rubbers can exhibit a highly effective stress and strain transfer mechanism at its interface with the rubber, and endow it with remarkable stretchability improvement (>100%). In particular, this hybrid also exhibits a highly sensitive, broadband frequency electrical response (up to 180 Hz) for a wide range of strains.

By correlating the mechanical signal of muscle movements obtained from this hybrid material with electromyography, we demonstrate that the strain sensor based on this hybrid material may provide a new, soft and wearable mechanomyography approach for real-time monitoring of complex neuromuscular-skeletal interactions for a broad range of healthcare and human-machine interface applications. This work also suggests a new architecture-enabled functional soft material platform for use in wearable electronics.
Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials_1
Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials_2
Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials_3
Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials_4
  • Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization
  • Yi Zheng, Hao-Ran Zhang, Xiao-Wei Li, You-Ran Zhao, Zhao-Song Li, Ye-Hao Hou, Chao Liu, Qiong-Hua Wang
  • Opto-Electronic Advances
  • 2025-06-19
  • Cascaded metasurfaces for adaptive aberration correction
  • Lei Zhang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2025-05-27
  • Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
  • Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
  • Opto-Electronic Advances
  • 2025-05-27
  • Spectrally extended line field optical coherence tomography angiography
  • Si Chen, Kan Lin, Xi Chen, Yukun Wang, Chen Hsin Sun, Jia Qu, Xin Ge, Xiaokun Wang, Linbo Liu
  • Opto-Electronic Advances
  • 2025-05-27
  • Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
  • Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
  • Opto-Electronic Advances
  • 2025-05-27
  • Integrated photonic polarizers with 2D reduced graphene oxide
  • Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
  • Opto-Electronic Science
  • 2025-05-22
  • Tip-enhanced Raman scattering of glucose molecules
  • Zhonglin Xie, Chao Meng, Donghua Yue, Lei Xu, Ting Mei, Wending Zhang
  • Opto-Electronic Science
  • 2025-05-22
  • Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
  • Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
  • Opto-Electronic Science
  • 2025-04-25
  • Reconfigurable origami chiral response for holographic imaging and information encryption
  • Zhibiao Zhu, Yongfeng Li, Jiafu Wang, Ze Qin, Lixin Jiang, Yang Chen, Shaobo Qu
  • Opto-Electronic Science
  • 2025-04-25
  • Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage
  • Xingdong Feng, Tianqi Zhang, Xuejun Liu, Fan Zhang, Jianjun Wang, Hong Bao, Shan Jiang, YongAn Huang
  • Opto-Electronic Advances
  • 2025-04-02
  • Phase reconstruction via metasurface-integrated quantum analog operation
  • Qiuying Li, Minggui Liang, Shuoqing Liu, Jiawei Liu, Shizhen Chen, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Advances
  • 2025-04-02
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31



  • Molecular imprinting and cladding produces antibody mimics with significantly improved affinity and specificity        Transplantation of a Beating Heart: A First in Human
    About
    |
    Contact
    |
    Copyright © PubCard