Year
Month

(Peer-Reviewed) Decontamination of infected plant seeds utilizing atmospheric gliding arc discharge plasma treatment
Chengcheng Liu 刘成成 ¹, Jianfeng Cui 崔见凤 ¹, Di Zhang 张頔 ¹, Hongwei Tang 汤红卫 ¹, Biao Gong 巩彪 ², Shengxuan Zu 祖圣宣 ¹, Chongshan Zhong 仲崇山 ¹
¹ College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, People's Republic of China
中华人民共和国 北京 中国农业大学信息与电气工程学院
² College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
中华人民共和国 泰安 山东农业大学园艺科学与工程学院
Plasma Science and Technology , 2021-08-27
Abstract

In agriculture production, plant health is threatened by pathogens parasitic on seeds; hence, it is necessary to disinfect harvested seeds before germination. In this study, a technique of gliding arc plasma treatment was proposed and investigated. The experiment was conducted to treat Astragalus membranaceus (A. membranaceus) seeds that were artificially infected with Fusarium oxysporum (F. oxysporum).

The plasma treatment duration varied from 30 s to 270 s. Direct and indirect treatments were compared to evaluate the inactivation efficiency of the F. oxysporum spores on the surface of seeds. The results indicated that the direct treatment behaved significantly better in disinfection than the indirect way. Meanwhile, experiments of the quantitative assessment of seed germination were also conducted, including the germination rate, the germination potential, and the germination index. The results showed that the inactivation efficiency increased as the plasma treatment time was extended. When the treatment time was 90 s, the inactivation efficiency reached more than 98%. The plasma treatment of 270 s had a complete devitalization of F. oxysporum spores on the surface of the seeds. After the treatment of 30 s and 90 s, the seed germination parameters improved significantly.

This study verified the inactivation efficacy of gliding arc discharge plasma under atmospheric pressure. The technique of gliding arc treatment shows advantages of energy saving and adaptation and has the potential to be utilized in industry.
Decontamination of infected plant seeds utilizing atmospheric gliding arc discharge plasma treatment_1
Decontamination of infected plant seeds utilizing atmospheric gliding arc discharge plasma treatment_2
Decontamination of infected plant seeds utilizing atmospheric gliding arc discharge plasma treatment_3
  • Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization
  • Yi Zheng, Hao-Ran Zhang, Xiao-Wei Li, You-Ran Zhao, Zhao-Song Li, Ye-Hao Hou, Chao Liu, Qiong-Hua Wang
  • Opto-Electronic Advances
  • 2025-06-19
  • Cascaded metasurfaces for adaptive aberration correction
  • Lei Zhang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2025-05-27
  • Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
  • Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
  • Opto-Electronic Advances
  • 2025-05-27
  • Spectrally extended line field optical coherence tomography angiography
  • Si Chen, Kan Lin, Xi Chen, Yukun Wang, Chen Hsin Sun, Jia Qu, Xin Ge, Xiaokun Wang, Linbo Liu
  • Opto-Electronic Advances
  • 2025-05-27
  • Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
  • Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
  • Opto-Electronic Advances
  • 2025-05-27
  • Integrated photonic polarizers with 2D reduced graphene oxide
  • Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
  • Opto-Electronic Science
  • 2025-05-22
  • Tip-enhanced Raman scattering of glucose molecules
  • Zhonglin Xie, Chao Meng, Donghua Yue, Lei Xu, Ting Mei, Wending Zhang
  • Opto-Electronic Science
  • 2025-05-22
  • Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
  • Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
  • Opto-Electronic Science
  • 2025-04-25
  • Reconfigurable origami chiral response for holographic imaging and information encryption
  • Zhibiao Zhu, Yongfeng Li, Jiafu Wang, Ze Qin, Lixin Jiang, Yang Chen, Shaobo Qu
  • Opto-Electronic Science
  • 2025-04-25
  • Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage
  • Xingdong Feng, Tianqi Zhang, Xuejun Liu, Fan Zhang, Jianjun Wang, Hong Bao, Shan Jiang, YongAn Huang
  • Opto-Electronic Advances
  • 2025-04-02
  • Phase reconstruction via metasurface-integrated quantum analog operation
  • Qiuying Li, Minggui Liang, Shuoqing Liu, Jiawei Liu, Shizhen Chen, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Advances
  • 2025-04-02
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31



  • Experimental study of a porous electrospray thruster with different number of emitter-strips        Strange quark star and the parameter space of the quasi-particle model
    About
    |
    Contact
    |
    Copyright © PubCard