Year
Month

(Preprint) Successful New-entry Prediction for Multi-Party Online Conversations via Latent Topics and Discourse Modeling
Lingzhi Wang ¹, Jing Li 李菁 ², Xingshan Zeng 曾幸山 ³, Kam-Fai Wong 黄锦辉 ¹
¹ The Chinese University of Hong Kong, Hong Kong, China
中国 香港 香港中文大学
² The Hong Kong Polytechnic University, Hong Kong, China
中国 香港 香港理工大学
³ Huawei Noah’s Ark Lab, Hong Kong, China
中国 香港 华为诺亚方舟实验室
arXiv , 2021-08-18
Abstract

With the increasing popularity of social media, online interpersonal communication now plays an essential role in people's everyday information exchange. Whether and how a newcomer can better engage in the community has attracted great interest due to its application in many scenarios. Although some prior works that explore early socialization have obtained salient achievements, they are focusing on sociological surveys based on the small group.

To help individuals get through the early socialization period and engage well in online conversations, we study a novel task to foresee whether a newcomer's message will be responded to by other participants in a multi-party conversation (henceforth \textbf{Successful New-entry Prediction}). The task would be an important part of the research in online assistants and social media. To further investigate the key factors indicating such engagement success, we employ an unsupervised neural network, Variational Auto-Encoder (\textbf{VAE}), to examine the topic content and discourse behavior from newcomer's chatting history and conversation's ongoing context. Furthermore, two large-scale datasets, from Reddit and Twitter, are collected to support further research on new-entries.

Extensive experiments on both Twitter and Reddit datasets show that our model significantly outperforms all the baselines and popular neural models. Additional explainable and visual analyses on new-entry behavior shed light on how to better join in others' discussions.
Successful New-entry Prediction for Multi-Party Online Conversations via Latent Topics and Discourse Modeling_1
Successful New-entry Prediction for Multi-Party Online Conversations via Latent Topics and Discourse Modeling_2
Successful New-entry Prediction for Multi-Party Online Conversations via Latent Topics and Discourse Modeling_3
Successful New-entry Prediction for Multi-Party Online Conversations via Latent Topics and Discourse Modeling_4
  • Review for wireless communication technology based on digital encoding metasurfaces
  • Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
  • Opto-Electronic Advances
  • 2025-07-17
  • Coulomb attraction driven spontaneous molecule-hotspot paring enables universal, fast, and large-scale uniform single-molecule Raman spectroscopy
  • Lihong Hong, Haiyao Yang, Jianzhi Zhang, Zihan Gao, Zhi-Yuan Li
  • Opto-Electronic Advances
  • 2025-07-17
  • Multiphoton intravital microscopy in small animals of long-term mitochondrial dynamics based on super‐resolution radial fluctuations
  • Saeed Bohlooli Darian, Jeongmin Oh, Bjorn Paulson, Minju Cho, Globinna Kim, Eunyoung Tak, Inki Kim, Chan-Gi Pack, Jung-Man Namgoong, In-Jeoung Baek, Jun Ki Kim
  • Opto-Electronic Advances
  • 2025-07-17
  • Research progress on generating perfect vortex beams based on metasurfaces
  • Xiujuan Liu, Manna Gu, Ying Tian, Mingfeng Zheng, Bo Fang, Zhi Hong, Chee Leong Tan, Xufeng Jing
  • Opto-Electronic Science
  • 2025-07-09
  • Non-volatile tunable multispectral compatible infrared camouflage based on the infrared radiation characteristics of Rosaceae plants
  • Xin Li, Xinye Liao, Junxiang Zeng, Zao Yi, Xin He, Jiagui Wu, Huan Chen, Zhaojian Zhang, Yang Yu, Zhengfu Zhang, Sha Huang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-07-09
  • Spectro-polarimetric detection enabled by multidimensional metasurface with quasi-bound states in the continuum
  • Haoyang He, Fangxing Lai, Yan Zhang, Xue Zhang, Chenyi Tian, Xin Li, Yongtian Wang, Shumin Xiao, Lingling Huang
  • Opto-Electronic Advances
  • 2025-06-30
  • Emerging low-dimensional perovskite resistive switching memristors: from fundamentals to devices
  • Shuanglong Wang, Hong Lian, Haifeng Ling, Hao Wu, Tianxiao Xiao, Yijia Huang, Peter Müller-Buschbaum
  • Opto-Electronic Advances
  • 2025-06-27
  • CW laser damage of ceramics induced by air filament
  • Chuan Guo, Kai Li, Zelin Liu, Yuyang Chen, Junyang Xu, Zhou Li, Wenda Cui, Changqing Song, Cong Wang, Xianshi Jia, Ji'an Duan, Kai Han
  • Opto-Electronic Advances
  • 2025-06-27
  • High fiber-to-fiber net gain in erbium-doped thin film lithium niobate waveguide amplifier as an external gain chip
  • Jinli Han, Mengqi Li, Rongbo Wu, Jianping Yu, Lang Gao, Zhiwei Fang, Min Wang, Youting Liang, Haisu Zhang, Ya Cheng
  • Opto-Electronic Science
  • 2025-06-26
  • Eco-friendly quantum-dot light-emitting diode display technologies: prospects and challenges
  • Gao Peili, Li Chan, Zhou Hao, He Songhua, Yin Zhen, Ng Kar Wei, Wang Shuangpeng
  • Opto-Electronic Science
  • 2025-06-25
  • Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
  • Chen Geng, Wang Anqi, Zhang Yi, Zhang Fujun, Xu Dongchen, Liu Yueqi, Zhang Zhi, Yan Zhijun, Li Zhen, Li Hao, Sun Qizhen
  • Opto-Electronic Science
  • 2025-06-25
  • Observation of polaronic state assisted sub-bandgap saturable absorption
  • Li Zhou, Yiduo Wang, Jianlong Kang, Xin Li, Quan Long, Xianming Zhong, Zhihui Chen, Chuanjia Tong, Keqiang Chen, Zi-Lan Deng, Zhengwei Zhang, Chuan-Cun Shu, Yongbo Yuan, Xiang Ni, Si Xiao, Xiangping Li, Yingwei Wang, Jun He
  • Opto-Electronic Advances
  • 2025-06-19



  • Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks        DRVI: Dual Refinement for Video Interpolation
    About
    |
    Contact
    |
    Copyright © PubCard