Year
Month

(Peer-Reviewed) Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage
Xingdong Feng 冯兴东 ¹ ², Tianqi Zhang 张天琪 ¹ ², Xuejun Liu 刘雪军 ³, Fan Zhang 张帆 ³, Jianjun Wang 王建军 ² ⁴, Hong Bao 保宏 ¹ ², Shan Jiang 江山 ¹ ² ³ ⁴, YongAn Huang 黄永安 ³
¹ Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
中国 杭州 西安电子科技大学杭州研究院
² School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
中国 西安 西安电子科技大学机电工程学院
³ State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学 智能制造装备与技术全国重点实验室
⁴ State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xidian University, Xi'an 710071, China
中国 西安 西安电子科技大学 高性能电子装备机电集成制造全国重点实验室
Opto-Electronic Advances , 2025-04-02
Abstract

The combination of advanced photoelectric detectors has rendered single-band camouflage materials ineffective, necessitating the development of infrared multispectral camouflage. However, the design and fabrication of existing works remain complex as they usually require the integration of multiscale structures. Here, we introduce phase modulation into the infrared camouflage metasurfaces with metal-dielectric-metal configuration, enabling them to achieve camouflage across more bands.

Based on this strategy, a simple but effective single-layer cascaded metasurface is demonstrated for the first time to achieve low reflection at multi-wavelength lasers, low infrared radiation in atmospheric windows, and broadband thermal management. As a proof-of-concept, a 4-inch sample with a minimum linewidth of 1.8 μm is fabricated using photolithography. The excellent infrared multispectral camouflage performance is verified in experiments, showing low reflectance in 0.9–1.6 μm, low infrared emissivity in mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) bands, and high absorptance at the wavelength of 10.6 μm.

Meanwhile, broadband high emissivity in 5–8 μm can provide high-performance radiative heat dissipation. When the input power is 1.57 W∙cm-2, the surface/radiation temperature of the metasurface decreases by 5.3 °C/18.7 °C compared to the reference. The proposed metasurface may trigger further innovation in the design and application of compact multispectral optical devices.
Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage_1
Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage_2
Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage_3
Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage_4
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25
  • Phase matching sampling algorithm for sampling rate reduction in time division multiplexing optical fiber sensor system
  • Junhui Wu, Zhilin Xu, Yi Shi, Yurong Liang, Qizhen Sun
  • Opto-Electronic Technology
  • 2025-09-18
  • Three-dimensional integrated optical fiber devices: emergence and applications
  • Tingting Yuan, Xiaotong Zhang, Shitai Yang, Donghui Wang, Libo Yuan
  • Opto-Electronic Technology
  • 2025-09-18
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • All-optical digital logic and neuromorphic computing based on multi-wavelength auxiliary and competition in a single microring resonator
  • Qiang Zhang, Yingjun Fang, Ning Jiang, Anran Li, Jiahao Qian, Yiqun Zhang, Gang Hu, Kun Qiu
  • Opto-Electronic Science
  • 2025-08-28
  • Fast step heterodyne light-induced thermoelastic spectroscopy gas sensing based on a quartz tuning fork with high-frequency of 100 kHz
  • Yuanzhi Wang Ying He, Shunda Qiao, Xiaonan Liu, Chu Zhan, Xiaoming Duan, Yufei Ma
  • Opto-Electronic Advances
  • 2025-08-28
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25



  • Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization        Full-dimensional complex coherence properties tomography for multi-cipher information security
    About
    |
    Contact
    |
    Copyright © PubCard