(Peer-Reviewed) Adding dimensions with Lucy–Richardson–Rosen algorithm to incoherent imaging
Tatsuki Tahara
National Institute of Information and Communications Technology, 4-2-1 Nukuikitamachi, Koganei, Tokyo 184-8795, Japan
Opto-Electronic Advances, 2023-05-30
Abstract
A novel computational reconstruction method called the Lucy–Richardson–Rosen algorithm (LRRA) for the construction of a single-shot infrared 3D imaging microscope was reported in Opto-Electronic Science. In that study, a commonly available optical element, the Cassegrain objective lens, was used as a coded aperture for 3D imaging using LRRA.
Unlike regular coded aperture imaging systems, achieving 3D imaging using commonly available imaging devices leads to the development of hybrid imaging systems where direct and indirect imaging concepts coexist. The development above will make 3D imaging more commonly used in daily life.
Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
Opto-Electronic Advances
2024-08-28
Multifunctional mixed analog/digital signal processor based on integrated photonics
Yichen Wu, Qipeng Yang, Bitao Shen, Yuansheng Tao, Xuguang Zhang, Zihan Tao, Luwen Xing, Zhangfeng Ge, Tiantian Li, Bowen Bai, Haowen Shu, Xingjun Wang
Opto-Electronic Science
2024-08-16