Year
Month
(Peer-Reviewed) Power grid fault diagnosis based on a deep pyramid convolutional neural network
Xu Zhang 张旭, Huiting Zhang 张慧婷, Dongying Zhang 张东英, Yixian Wang 王仪贤, Ruiting Ding 丁睿婷, Yuchuan Zheng 郑钰川, Yongxu Zhang 张永旭
School of Electrical & Electronic Engineering, North China Electric Power University, Beijing, 102206, China
中国 北京 华北电力大学电气与电子工程学院
Abstract

Existing power grid fault diagnosis methods rely on manual experience to design diagnosis models, lack the ability to extract fault knowledge, and are difficult to adapt to complex and changeable engineering sites. In this context, this paper proposes a power grid fault diagnosis method based on a deep pyramid convolutional neural network for the alarm information set.

This approach uses the deep feature extraction ability of the network to extract fault feature knowledge from alarm information texts and achieve end-to-end fault classification and fault device identification. First, a deep pyramid convolutional neural network model for extracting the overall characteristics of fault events is constructed to identify fault types. Second, a deep pyramidal convolutional neural network model for alarm information text is constructed, the text description characteristics associated with alarm information text are extracted, the key information corresponding to faults in the alarm information set is identified, and suspicious faulty devices are selected.

Then, a fault device identification strategy that integrates fault-type and time sequence priorities is proposed to identify faulty devices. Finally, the actual fault cases and the fault cases generated by simulation are studied, and the results verify the effectiveness and practicability of the method presented in this paper.
Power grid fault diagnosis based on a deep pyramid convolutional neural network_1
Power grid fault diagnosis based on a deep pyramid convolutional neural network_2
Power grid fault diagnosis based on a deep pyramid convolutional neural network_3
Power grid fault diagnosis based on a deep pyramid convolutional neural network_4
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07
  • On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
  • Cheng-Long Zheng, Pei-Nan Ni, Yi-Yang Xie, Patrice Genevet
  • Opto-Electronic Advances
  • 2025-01-07
  • Ferroelectric domain engineering of lithium niobate
  • Jackson J. Chakkoria, Aditya Dubey, Arnan Mitchell, Andreas Boes
  • Opto-Electronic Advances
  • 2025-01-03



  • Water-sensitive multicolor luminescence in lanthanide-organic framework for anti-counterfeiting                                Tunable surface plasmon-polariton resonance in organic light-emitting devices based on corrugated alloy electrodes
    About
    |
    Contact
    |
    Copyright © PubCard