Year
Month
(Peer-Reviewed) Range-Angle Dependent Beampattern Synthesis Method for OFDM-Based Passive Radar
RAO Yunhua 饶云华 ¹ ², HE Hao ¹, WAN Xianrong 万显荣 ¹ ², YI Jianxin 易建新 ¹ ²
¹ School of Electronic Information, Wuhan University, Wuhan 430072, Hubei, China
中国 湖北 武汉 武汉大学电子信息学院
² Shenzhen Research Institute, Wuhan University, Shenzhen 518063, Guangdong, China
中国 广东 深圳 武汉大学深圳研究院
Abstract

Frequency diverse array (FDA) radar applies a tiny frequency offset across its adjacent transmitting array elements to generate a range-angle-dependent beampattern. The increased degrees-of-freedom (DOFs) in range domain can help improve the performance of radar in target detection, localization, and clutter suppression.

Passive radar utilizes uncontrollable external signal as illuminator, which makes it difficult to apply traditional frequency diverse process method. However, the third-party illuminator such as Orthogonal Frequency Division Multiplexing (OFDM) signal usually consists of several closely spaced modulated carriers, and it has been widely selected as the illuminator for passive radar in recent years.

Considering the orthogonality between even separated subcarriers, we propose a new frequency diverse process method by extracting and processing each subcarrier of received data independently and attempt to provide a range-angle dependent beampattern for OFDM passive radar. Numerical results and real data analyses verify the superiority of frequency diversity process on the received data of OFDM passive radar.
Range-Angle Dependent Beampattern Synthesis Method for OFDM-Based Passive Radar_1
Range-Angle Dependent Beampattern Synthesis Method for OFDM-Based Passive Radar_2
Range-Angle Dependent Beampattern Synthesis Method for OFDM-Based Passive Radar_3
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07
  • On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
  • Cheng-Long Zheng, Pei-Nan Ni, Yi-Yang Xie, Patrice Genevet
  • Opto-Electronic Advances
  • 2025-01-07
  • Ferroelectric domain engineering of lithium niobate
  • Jackson J. Chakkoria, Aditya Dubey, Arnan Mitchell, Andreas Boes
  • Opto-Electronic Advances
  • 2025-01-03



  • Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review                                Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems
    About
    |
    Contact
    |
    Copyright © PubCard