Year
Month
(Peer-Reviewed) Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS₂
Jiajie Pei 裴家杰 ¹ ², Xue Liu 刘学 ³, Andrés Granados del Águila ³, Di Bao 鲍迪 ³, Sheng Liu 刘盛 ³, Mohamed-Raouf AMARA ³, Weijie Zhao 赵伟杰 ³, Feng Zhang 张峰 ¹, Congya You 游聪雅 ⁴, Yongzhe Zhang 张永哲 ⁴, Kenji Watanabe ⁵, Takashi Taniguchi ⁵, Han Zhang 张晗 ¹, Qihua Xiong 熊启华 ⁶
¹ Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
中国 深圳 深圳大学物理与光电工程学院 二维材料光电科技国际合作联合实验室 光电科技协同创新中心
² College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
中国 福州 福州大学材料科学与工程学院
³ Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
⁴ College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
中国 北京 北京理工大学材料学院
⁵ Research Center for Functional Materials, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
⁶ State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
中国 北京 清华大学物理系 低维量子物理国家重点实验室
Opto-Electronic Advances, 2022-10-28
Abstract

Monolayer group VI transition metal dichalcogenides (TMDs) have recently emerged as promising candidates for photonic and opto-valleytronic applications. The optoelectronic properties of these atomically-thin semiconducting crystals are strongly governed by the tightly bound electron-hole pairs such as excitons and trions (charged excitons).

The anomalous spin and valley configurations at the conduction band edges in monolayer WS₂ give rise to even more fascinating valley many-body complexes. Here we find that the indirect Q valley in the first Brillouin zone of monolayer WS₂ plays a critical role in the formation of a new excitonic state, which has not been well studied.

By employing a high-quality h-BN encapsulated WS₂ field-effect transistor, we are able to switch the electron concentration within K-Q valleys at conduction band edges. Consequently, a distinct emission feature could be excited at the high electron doping region. Such feature has a competing population with the K valley trion, and experiences nonlinear power-law response and lifetime dynamics under doping.

Our findings open up a new avenue for the study of valley many-body physics and quantum optics in semiconducting 2D materials, as well as provide a promising way of valley manipulation for next-generation entangled photonic devices.
Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS₂_1
Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS₂_2
Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS₂_3
Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS₂_4
  • Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters
  • Yinan Zhang, Yinggang Chen, Tong Wang, Qian Zhu, Min Gu
  • Opto-Electronic Advances
  • 2024-03-12
  • Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
  • Yichao Liu, Xiaomin Ma, Kun Chao, Fei Sun, Zihao Chen, Jinyuan Shan, Hanchuan Chen, Gang Zhao, Shaojie Chen
  • Opto-Electronic Science
  • 2024-02-29
  • Generation of lossy mode resonances (LMR) using perovskite nanofilms
  • Dayron Armas, Ignacio R. Matias, M. Carmen Lopez-Gonzalez, Carlos Ruiz Zamarreño, Pablo Zubiate, Ignacio del Villar, Beatriz Romero
  • Opto-Electronic Advances
  • 2024-02-26
  • Acousto-optic scanning multi-photon lithography with high printing rate
  • Minghui Hong
  • Opto-Electronic Advances
  • 2024-02-26
  • Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
  • Pengcheng Huo, Ruixuan Yu, Mingze Liu, Hui Zhang, Yan-qing Lu, Ting Xu
  • Opto-Electronic Advances
  • 2024-02-26
  • Miniature tunable Airy beam optical meta-device
  • Jing Cheng Zhang, Mu Ku Chen, Yubin Fan, Qinmiao Chen, Shufan Chen, Jin Yao, Xiaoyuan Liu, Shumin Xiao, Din Ping Tsai
  • Opto-Electronic Advances
  • 2024-02-26
  • Data-driven polarimetric imaging: a review
  • Kui Yang, Fei Liu, Shiyang Liang, Meng Xiang, Pingli Han, Jinpeng Liu, Xue Dong, Yi Wei, Bingjian Wang, Koichi Shimizu, Xiaopeng Shao
  • Opto-Electronic Science
  • 2024-02-24
  • Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
  • Zhao Zhang, Gaoyuan Li, Yonglei Liu, Haiyun Wang, Bernhard J. Hoenders, Chunhao Liang, Yangjian Cai, Jun Zeng
  • Opto-Electronic Science
  • 2024-01-31
  • Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
  • Xin Ge, Si Chen, Kan Lin, Guangming Ni, En Bo, Lulu Wang, Linbo Liu
  • Opto-Electronic Science
  • 2024-01-31
  • Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
  • Yuncheng Liu, Ke Xu, Xuhao Fan, Xinger Wang, Xuan Yu, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2024-01-25
  • Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
  • Keyao Li, Yiming Wang, Dapu Pi, Baoli Li, Haitao Luan, Xinyuan Fang, Peng Chen, Yanqing Lu, Min Gu
  • Opto-Electronic Advances
  • 2024-01-25
  • Physics-informed deep learning for fringe pattern analysis
  • Wei Yin, Yuxuan Che, Xinsheng Li, Mingyu Li, Yan Hu, Shijie Feng, Edmund Y. Lam, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2024-01-25



  • High-performance warm white LED based on thermally stable all inorganic perovskite quantum dots                                Low-loss chip-scale programmable silicon photonic processor
    About
    |
    Contact
    |
    Copyright © PubCard