Year
Month
(Peer-Reviewed) Influence of N-doping on dielectric properties of carbon-coated copper nanocomposites in the microwave and terahertz ranges
Feirong Huang 黄斐荣 ¹, Shuting Fan 范姝婷 ², Yuqi Tian 田雨祁 ¹, Xinghao Qu 曲星昊 ¹, Xiyang Li 李夕阳 ¹, Maofan Qin 秦茂繁 ¹, Javid Muhammad ¹, Xuefeng Zhang 张雪峰 ³, Zhidong Zhang 张志东 ⁴, Xinglong Dong 董星龙 ¹
¹ Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, China
中国 大连 大连理工大学 材料科学与工程学院 三束材料改性教育部重点实验室
² College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
深圳大学 物理与光电工程学院
³ Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 110819, China
中国 杭州 杭州电子科技大学 材料与环境工程学院 磁性材料研究院
⁴ Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110015, China
中国 沈阳 中国科学院金属研究所 沈阳材料科学国家(联合)实验室
Abstract

Carbon-coated Cu nanocomposites (Cu@C NCs) consisting of core-shell nanoparticles and nanorods were synthesized by arc discharge plasma under an atmosphere of He and H2 gas, and the N-doping of them was achieved by a post-treatment process using ureal as the precursor. The concentration of N in the N-doped samples varies in the range of 0.62%–2.31 % (in mole), with a transformation from pyrrolic N to graphitic N when increasing the relative content of ureal.

Dielectric properties of the NCs without or with N-doping in the microwave and THz bands were investigated. The N-doped samples achieve the enhanced dielectric loss in both microwave and THz bands. In the microwave band, dielectric loss was dominated by interfacial polarization, dipolar polarization, and conduction loss, while in the THz band, plasma resonance, ionic polarization and conduction loss are responsible for the dielectric loss, with a strong absorption characteristic dominated by conductive effect.
Influence of N-doping on dielectric properties of carbon-coated copper nanocomposites in the microwave and terahertz ranges_1
Influence of N-doping on dielectric properties of carbon-coated copper nanocomposites in the microwave and terahertz ranges_2
Influence of N-doping on dielectric properties of carbon-coated copper nanocomposites in the microwave and terahertz ranges_3
  • Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters
  • Yinan Zhang, Yinggang Chen, Tong Wang, Qian Zhu, Min Gu
  • Opto-Electronic Advances
  • 2024-03-12
  • Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
  • Yichao Liu, Xiaomin Ma, Kun Chao, Fei Sun, Zihao Chen, Jinyuan Shan, Hanchuan Chen, Gang Zhao, Shaojie Chen
  • Opto-Electronic Science
  • 2024-02-29
  • Generation of lossy mode resonances (LMR) using perovskite nanofilms
  • Dayron Armas, Ignacio R. Matias, M. Carmen Lopez-Gonzalez, Carlos Ruiz Zamarreño, Pablo Zubiate, Ignacio del Villar, Beatriz Romero
  • Opto-Electronic Advances
  • 2024-02-26
  • Acousto-optic scanning multi-photon lithography with high printing rate
  • Minghui Hong
  • Opto-Electronic Advances
  • 2024-02-26
  • Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
  • Pengcheng Huo, Ruixuan Yu, Mingze Liu, Hui Zhang, Yan-qing Lu, Ting Xu
  • Opto-Electronic Advances
  • 2024-02-26
  • Miniature tunable Airy beam optical meta-device
  • Jing Cheng Zhang, Mu Ku Chen, Yubin Fan, Qinmiao Chen, Shufan Chen, Jin Yao, Xiaoyuan Liu, Shumin Xiao, Din Ping Tsai
  • Opto-Electronic Advances
  • 2024-02-26
  • Data-driven polarimetric imaging: a review
  • Kui Yang, Fei Liu, Shiyang Liang, Meng Xiang, Pingli Han, Jinpeng Liu, Xue Dong, Yi Wei, Bingjian Wang, Koichi Shimizu, Xiaopeng Shao
  • Opto-Electronic Science
  • 2024-02-24
  • Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
  • Zhao Zhang, Gaoyuan Li, Yonglei Liu, Haiyun Wang, Bernhard J. Hoenders, Chunhao Liang, Yangjian Cai, Jun Zeng
  • Opto-Electronic Science
  • 2024-01-31
  • Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
  • Xin Ge, Si Chen, Kan Lin, Guangming Ni, En Bo, Lulu Wang, Linbo Liu
  • Opto-Electronic Science
  • 2024-01-31
  • Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
  • Yuncheng Liu, Ke Xu, Xuhao Fan, Xinger Wang, Xuan Yu, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2024-01-25
  • Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
  • Keyao Li, Yiming Wang, Dapu Pi, Baoli Li, Haitao Luan, Xinyuan Fang, Peng Chen, Yanqing Lu, Min Gu
  • Opto-Electronic Advances
  • 2024-01-25
  • Physics-informed deep learning for fringe pattern analysis
  • Wei Yin, Yuxuan Che, Xinsheng Li, Mingyu Li, Yan Hu, Shijie Feng, Edmund Y. Lam, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2024-01-25



  • Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays                                Ostensibly perpetual optical data storage in glass with ultra-high stability and tailored photoluminescence
    About
    |
    Contact
    |
    Copyright © PubCard