Year
Month
(Peer-Reviewed) Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials
Zijun He ¹ ², Zheng Qi ³, Huichao Liu ⁴, Kangyan Wang ¹, Leslie Roberts ⁵ ⁶, Jefferson Z Liu ⁷, Yilun Liu 刘益伦 ⁴, Stephen J Wang 王佳 ⁸ ⁹, Mark J Cook ⁶, George P Simon ², Ling Qiu 丘陵 ² ¹⁰, Dan Li 李丹 ¹ ²
¹ Department of Chemical Engineering, The University of Melbourne, Melbourne 3010, Australia
² Department of Materials Science and Engineering, Monash University, Melbourne 3800, Australia
³ Department of Chemical Engineering, Monash University, Melbourne 3800, Australia
⁴ State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049 China
中国 西安 西安交通大学航天航空学院 机械结构强度与振动国家重点实验室
⁵ Neurophysiology Department, Department of Neurology & Neurological Research, St Vincent's Hospital, Melbourne 3065, Australia
⁶ 6Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne 3010, Australia
⁷ Department of Mechanical Engineering, University of Melbourne, Melbourne 3010, Australia
⁸ Department of Design, Monash University, Melbourne 3145, Australia
⁹ School of Design, The Hong Kong Polytechnic University, Hong Kong, China
中国 香港 香港理工大学设计学院
¹⁰ Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
中国 深圳 清华-伯克利深圳学院 深圳盖姆石墨烯中心
National Science Review, 2021-10-05
Abstract

Human bodily movements are primarily controlled by the contractions of skeletal muscles. Unlike joint or skeletal movements that generally perform in the large displacement range, the contractions of the skeletal muscles that underpin these movements are subtle in intensity yet high in frequency. This subtlety of movement makes it a formidable challenge to develop wearable yet durable soft materials to electrically monitor such motions with high-fidelity such as for muscle/neuromuscular disease diagnosis.

Here we report that an intrinsically fragile ultralow-density graphene-based cellular monolith sandwiched between silicone rubbers can exhibit a highly effective stress and strain transfer mechanism at its interface with the rubber, and endow it with remarkable stretchability improvement (>100%). In particular, this hybrid also exhibits a highly sensitive, broadband frequency electrical response (up to 180 Hz) for a wide range of strains.

By correlating the mechanical signal of muscle movements obtained from this hybrid material with electromyography, we demonstrate that the strain sensor based on this hybrid material may provide a new, soft and wearable mechanomyography approach for real-time monitoring of complex neuromuscular-skeletal interactions for a broad range of healthcare and human-machine interface applications. This work also suggests a new architecture-enabled functional soft material platform for use in wearable electronics.
Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials_1
Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials_2
Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials_3
Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials_4
  • Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
  • Yuncheng Liu, Ke Xu, Xuhao Fan, Xinger Wang, Xuan Yu, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2024-01-25
  • Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
  • Keyao Li, Yiming Wang, Dapu Pi, Baoli Li, Haitao Luan, Xinyuan Fang, Peng Chen, Yanqing Lu, Min Gu
  • Opto-Electronic Advances
  • 2024-01-25
  • Physics-informed deep learning for fringe pattern analysis
  • Wei Yin, Yuxuan Che, Xinsheng Li, Mingyu Li, Yan Hu, Shijie Feng, Edmund Y. Lam, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2024-01-25
  • Advancing computer-generated holographic display thanks to diffraction model-driven deep nets
  • Vittorio Bianco, Pietro Ferraro
  • Opto-Electronic Advances
  • 2024-01-16
  • Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
  • Jiangbo Lyu, Tao Zhu, Yan Zhou, Zhenmin Chen, Yazhi Pi, Zhengtong Liu, Xiaochuan Xu, Ke Xu, Xu Ma, Lei Wang, Zizheng Cao, Shaohua Yu
  • Opto-Electronic Science
  • 2024-01-09
  • Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
  • Yuting Xiao, Lianwei Chen, Mingbo Pu, Mingfeng Xu, Qi Zhang, Yinghui Guo, Tianqu Chen, Xiangang Luo
  • Opto-Electronic Science
  • 2024-01-05
  • Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry
  • Chunyan Chu, Zhentao Liu, Mingliang Chen, Xuehui Shao, Guohai Situ, Yuejin Zhao, Shensheng Han
  • Opto-Electronic Advances
  • 2023-3-10
  • Flat soliton microcomb source
  • Xinyu Wang, Xuke Qiu, Mulong Liu, Feng Liu, Mengmeng Li, Linpei Xue, Bohan Chen, Mingran Zhang, Peng Xie
  • Opto-Electronic Science
  • 2023-12-29
  • Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection
  • Deer Su, Xiangyu Li, Weida Gao, Qiuhua Wei, Haoyu Li, Changliang Guo, Weisong Zhao
  • Opto-Electronic Science
  • 2023-12-28
  • Exceptional-point-enhanced sensing in an all-fiber bending sensor
  • Zheng Li, Jingxu Chen, Lingzhi Li, Jiejun Zhang, Jianping Yao
  • Opto-Electronic Advances
  • 2023-12-12
  • All-optical object identification and three-dimensional reconstruction based on optical computing metasurface
  • Dingyu Xu, Wenhao Xu, Qiang Yang, Wenshuai Zhang, Shuangchun Wen, Hailu Luo,
  • Opto-Electronic Advances
  • 2023-12-12



  • Molecular imprinting and cladding produces antibody mimics with significantly improved affinity and specificity                                Transplantation of a Beating Heart: A First in Human
    About
    |
    Contact
    |
    Copyright © PubCard